首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of −62 and −60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1 M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 × 10−6 to 9.6 × 10−4 M, 1.5 × 10−5 to 2.4 × 10−4 M, and 5.0 × 10−5 to 8 × 10−4 M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.  相似文献   

2.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and -glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized -glucose oxidase membrane was 0.34 units cm−2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized -glucose oxidase membrane was 1.6 × 10−3 mol l−1 and that of free enzyme was 4.8 × 10−2 mol l−1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized -glucose oxidase membrane. The enzyme electrode responded linearly to -glucose over the concentration 0–1000 mg dl−1 within 10 s. When the enzyme electrode was applied to the determination of -glucose in human serum, within day precision (CV) was 1.29% for -glucose concentration with a mean value of 106.8 mg dl−1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized -glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of -glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

3.
This paper demonstrated the selective determination of folic acid (FA) in the presence of important physiological interferents, ascorbic acid (AA) and uric acid (UA) at physiological pH using electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole (p-AMT) modified glassy carbon (GC) electrode. Bare GC electrode fails to determine the concentration of FA in the presence of AA and UA due to the surface fouling caused by the oxidized products of AA and FA. However, the p-AMT film modified electrode not only separates the voltammetric signals of AA, UA and FA with potential differences of 170 and 410 mV between AA–UA and UA–FA, respectively but also shows higher oxidation current for these analytes. The p-AMT film modified electrode displays an excellent selectivity towards the determination of FA even in the presence of 200-fold AA and 100-fold UA. Using amperometric method, we achieved the lowest detection of 75 nM UA and 100 nM each AA and FA. The amperometric current response was increased linearly with increasing FA concentration in the range of 1.0 × 10−7–8.0 × 10−4 M and the detection limit was found to be 2.3 × 10−10 M (S/N = 3). The practical application of the present modified electrode was successfully demonstrated by determining the concentration of FA in human blood serum samples.  相似文献   

4.
An ethanol biosensor, based on the electrogenerated chemiluminescence of Ru(bpy)32+-doped silica nanoparticles (RuSiNPs), was investigated in this study. The biosensor was a modified glassy carbon electrode, where alcohol dehydrogenase was crosslinked to RuSiNPs, and then immobilized on the electrode surface using chitosan. The results indicated that the biosensor exhibited excellent performance during ethanol determination with a wide linear range (10−7 to 10−2 M), low detection limit (5.0 × 10−8 M) and good stability.  相似文献   

5.
In the present study, an electrochemical aptasensor for highly sensitive detection of thrombin was developed based on bio-barcode amplification assay. For this proposed aptasensor, capture DNA aptamerI was immobilized on the Au electrode. The functional Au nanoparticles (DNA–AuNPs) are loaded with barcode binding DNA and aptamerII. Through the specific recognition for thrombin, a sandwich format of Au/aptamerI/thrombin/DNA–AuNPs was fabricated. After hybridization with the PbSNPs-labeled barcode DNA, the assembled sensor was obtained. The concentration of thrombin was monitored based on the concentration of lead ions dissolved through differential pulse anodic stripping voltammetric (DPASV). Under optimum conditions, a detection limit of 6.2 × 10−15 mol L−1 (M) thrombin was achieved. In addition, the sensor exhibited excellent selectivity against other proteins.  相似文献   

6.
The present paper reports the graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose by free radical polymerization using potassium peroxymonosulphate/thiourea redox system in an inert atmosphere. The reaction conditions for maximum grafting have been optimized by varying the reaction variables, including the concentration of N-vinylformamide (12.0 × 10−2–28.0 × 10−2 mol dm−3), potassium peroxymonosulphate (4.0 × 10−3–12.0 × 10−3 mol dm−3), thiourea (1.2 × 10−3–4.4 × 10−3 mol dm−3), sulphuric acid (2.0 × 10−3–10.0 × 10−3 mol dm−3), sodium carboxymethylcellulose (0.2–1.8 g dm−3) along with time duration (60–180 min) and temperature (25–45° C). Water swelling capacity, metal ion sorption and flocculation studies of synthesized graft copolymer have been performed with respect to the parent polymer. The graft copolymer has been characterized by FTIR spectroscopy and thermogravimetric analysis.  相似文献   

7.
A new electrochemical method to monitor biotin–streptavidin interaction on carbon paste electrode, based on silver electrodeposition catalyzed by colloidal gold, was investigated. Silver reduction potential changed when colloidal gold was attached to an electrode surface through the biotin–streptavidin interaction. Thus, the direct reduction of silver ions on the electrode surface could be avoided and therefore, they were only reduced to metallic silver on the colloidal gold particle surface, forming a shell around these particles. When an anodic scan was performed, this shell of silver was oxidized and an oxidation process at +0.08 V was recorded in NH3 1.0 M. Biotinylated albumin was adsorbed on the pretreated electrode surface. This modified electrode was immersed in colloidal gold-streptavidin labeled solutions. The carbon paste electrode was then activated in adequate medium (NaOH 0.1 M and H2SO4 0.1 M) to remove proteins from the electrode surface while colloidal gold particles remained adsorbed on it. Then, a silver electrodeposition at −0.18 V for 2 min and anodic stripping voltammetry were carried out in NH3 1.0 M containing 2.0×10−5 M of silver lactate. An electrode surface preparation was carried out to obtain a good reproducibility of the analytical signal (5.3%), using a new electrode for each experiment. In addition, a sequential competitive assay was carried out to determine streptavidin. A linear relationship between peak current and logarithm of streptavidin concentration from 2.25×10−15 to 2.24×10−12 M and a limit of detection of 2.0×10−15 M were obtained.  相似文献   

8.
Highly ordered Ni nanowire arrays (NiNWAs) were synthesized for the first time using a template-directed electropolymerization strategy with a nanopore polycarbonate (PC) membrane template, and their morphological characterization were examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). A NiNWAs based electrode shows very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which has been utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 5.0 × 10−7 to 7.0 × 10−3 M, a high sensitivity of 1043 μA mM−1 cm−2, and a low detection limit of 1 × 10−7 M. The experiment results also showed that the sensor exhibits good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species.  相似文献   

9.
A convenient and effective strategy for fabrication of hydrogen peroxide biosensor based on sodium alginate (SA) and polyvinyl butyral (PVB) as matrices was reported in this paper. The horseradish peroxidase (HRP) and SA were electro-co-deposited onto the surface of gold electrode, and the HRP–SA/Au electrode was further coated with PVB. The interaction between HRP and SA was characterized by UV–vis absorption spectroscopy, and the fabricating process of biosensor was characterized by electrochemical impedance spectroscopy (EIS). The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. Experimental conditions were investigated which influence the performance of the biosensor, such as pH, and applied potential. The biosensor showed a linear response to H2O2 over a concentration range from 7.0 × 10−6 to 4.1 × 10−3 M with a detection limit of 1.8 × 10−6 M based on a signal-to-noise ratio of 3 under optimum conditions. The value of HRP in the composite was evaluated to be 1.38 mM. The biosensor obtained from this study possesses high sensitivity, good reproducibility, and long-term stability.  相似文献   

10.
The neuropeptide EI (NEI) is derived from proMCH. It activates GnRH neurons, and has been shown to stimulate the LH release following intracerebroventricular administration in several experimental models. The aim of the present paper was to evaluate NEI actions on pituitary hormone secretion and cell morphology in vitro. Pituitary cells from female rats were treated with NEI for a wide range of concentrations (1–400 × 10−8 M) and time periods (1–5 h). The media were collected and LH, FSH, PRL, and GH measured by RIA. The interaction between NEI (1, 10 and 100 × 10−8 M) and GnRH (0.1 and 1 × 10−9 M) was also tested. Pituitary cells were harvested for electron microscopy, and the immunogold immunocytochemistry of LH was assayed after 2 and 4 h of NEI incubation. NEI (100 × 10−8 M) induced a significant LH secretion after 2 h of stimulus, reaching a maximum response 4 h later. A rapid and remarkable LH release was induced by NEI (400 × 10−8 M) 1 h after stimulus, attaining its highest level at 2 h. However, PRL, GH and FSH were not affected. NEI provoked ultrastructural changes in the gonadotrophs, which showed accumulations of LH-immunoreactive granules near the plasma membrane and exocytotic images, while the other populations exhibited no changes. Although NEI (10 × 10−8 M), caused no action when used alone, its co-incubation with GnRH (1 × 10−9 M), promoted a slight but significant increase in LH. These results demonstrate that NEI acts at the pituitary level through a direct action on gonadotrophs, as well as through interaction with GnRH.  相似文献   

11.
A new acridone derivative 2-nitroacridone (NAD) was synthesized in this paper, and it was found that NAD had excellent electrochemical activity on the glassy carbon electrode (GCE) with a couple reversible redox peaks at 0.051 V and 0.103 V, respectively. Voltammetry was used to investigate the electrochemical behavior of NAD and the interaction between NAD and salmon sperm DNA. In pH 4.0 phosphate buffer solution, the binding ratio between NAD and salmon sperm DNA was calculated to be 2:1 and the binding constant was 3.19 × 105 L/mol. A Chronic Myelogenous Leukemia (CML, Type b3a2) DNA biosensor was developed by immobilizing covalently single-stranded CML DNA fragments to a modified GCE. The surface hybridization of the immobilized single-stranded CML DNA fragment with its complementary DNA fragment was evidenced by electrochemical methods using NAD as a novel electrochemical indicator, with a detection limit of 6.7 × 10−9 M and a linear response range of 1.8 × 10−8 M to 9.1 × 10−8 M for CML DNA. Selective determination of complementary ssDNA was achieved using differential pulse voltammetry (DPV).  相似文献   

12.
An amperometric assay for the determination of inorganic phosphate (Pi) in urine has been developed without the need for sample preparation. A screen-printed carbon electrode modified with the electrocatalyst cobalt phthalocyanine (CoPC–SPCE) and covered with a cellulose acetate membrane (CAM) serves as the sensor. The sensor detects hydrogen peroxide (H2O2), which is produced as a result of the oxidative decarboxylation of pyruvate, catalyzed by pyruvate oxidase (PyOd), in the presence of Pi, oxygen, and cofactors. Following optimization of solution conditions, and in the presence of a urine sample, a linear range was found to exist between the rate of current increase and phosphate concentration over the range of 2.27 × 10−5 to 1.81 × 10−4 M, and the limit of detection was found to be 4.27 × 10−6 M. The assay was applied to the determination of phosphate ions in the urine of a normal subject, and the mean concentration in unspiked urine was found to be 3.40 × 10−5 M with a coefficient of variation of 8.0% (n = 5). The mean recovery of phosphate added to urine samples was 98.7% with a coefficient of variation of 5.5% (n = 3). To the authors’ knowledge, this is the first report of an amperometric assay for Pi that incorporates a CoPC–SPCE as the sensing device.  相似文献   

13.
An attractive biocomposite based on polycrystalline bismuth oxide (BiOx) film and polyphenol oxidase (PPO) was proposed for the construction of a mediator-free amperometric biosensor for phenolic compounds in environmental water samples. The phenolic biosensor could be easily achieved by casting the biocomposite on the surface of glassy carbon electrode (GCE) via the cross-linking step by glutaraldehyde. The laboratory-prepared bismuth oxide semiconductor was polymorphism. Its hydrophilicity provided a favorable microenvironment for retaining the biological activity of the immobilized protein. The parameters of the fabrication process and the various experimental variables for the enzyme electrode were optimized. The proposed PPO/BiOx biosensor provided a linear response to catechol over a concentration range of 4 × 10−9 M to 1.5 × 10−5 M with a dramatically developed sensitivity of 11.3 A M−1 cm−2 and a detection limit of 1 × 10−9 M based on S/N = 3. In addition, the PPO/BiOx biocomposite was characterized by scanning electron microscope (SEM), Fourier transform infrared spectra (FTIR) and rotating disk electrode voltammetry.  相似文献   

14.
Laccase-catalyzed oxidation of phenolic compounds in organic media   总被引:1,自引:0,他引:1  
Rhus vernificera laccase-catalyzed oxidation of phenolic compounds, i.e., (+)-catechin, (−)-epicatechin and catechol, was carried out in selected organic solvents to search for the favorable reaction medium. The investigation on reaction parameters showed that optimal laccase activity was obtained in hexane at 30 °C, pH 7.75 for the oxidation of (+)-catechin as well as for (−)-epicatechin, and in toluene at 35 °C, pH 7.25 for the oxidation of catechol. Ea and Q10 values of the biocatalysis in the reaction media of the larger log p solvents like isooctane and hexane were relatively higher than those in the reaction media of lower log p solvents like toluene and dichloromethane. Maximum laccase activity in the organic media was found with 6.5% of buffer as co-solvent. A wider range of 0–28 μg protein/ml in hexane than that of 0–16.7 μg protein/ml in aqueous medium was observed for the linear increasing conversion of (+)-catechin. The kinetic studies revealed that in the presence of isooctane, hexane, toluene and dichloromethane, the Km values were 0.77, 0.97, 0.53 and 2.9 mmol/L for the substrate of (+)-catechin; 0.43, 0.34, 0.14 and 3.4 mmol/L for (−)-epicatechin; 2.9, 1.8, 0.61 and 1.1 mmol/L for catechol, respectively, while the corresponding Vmax values were 2.1 × 10−2, 2.3 × 10−2, 0.65 × 10−2 and 0.71 × 10−2 δA/μg protein min); 1.8 × 10−2, 0.88 × 10−2, 0.19 × 10−2 and 1.0 × 10−2 δA/μg protein min); 0.48 × 10−2, 0.59 × 10−2, 0.67 × 10−2 and 0.54 × 10−2 δA/μg protein min), respectively. FT-IR indicated the formation of probable dimer from (+)-catechin in organic solvent. These results suggest that this laccase has higher catalytic oxidation capacity of phenolic compounds in suitable organic media and favorite oligomers could be obtained.  相似文献   

15.
Capillary zone electrophoresis was employed for the measurement of chloramphenicol using end-column amperometric detection with a carbon fiber micro-disk array electrode, at a constant potential of −1.00 V vs. saturated calomel electrode. The effect of oxygen in the buffer has been investigated. It is found that when the area of the carbon fiber electrode is smaller than 1.1 mm2, the interference of oxygen can be overcome. In this procedure deoxygenation is not necessary. The effect of pH, the concentration of the buffer and the high separation voltage across the capillary on the migration time, electrophoretic peak current and separation efficiency has been studied. The optimum conditions of separation and detection are 8.4×10−4 mol/l HOAc–3.2×10−3 mol/l NaOAc for the buffer solution, 20 kV for the separation voltage, 5 kV and 5 s for the injection voltage and the injection time, respectively. The calibration plot was found to be linear in the range 5×10−6 to 1×10−3 mol/l and the limit of detection is 9.1×10−7 mol/l or 1.4 fmol (S/N=2). The relative standard deviation is 1.1% for the migration time and 2.3% for the electrophoretic peak current. The method was applied to the determination of chloramphenicol in human serum.  相似文献   

16.
A biosensor based on the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI·Tf2N) and a novel source of peroxidase (tissue from the pine nuts of Araucaria angustifolia) was constructed. This enzyme was immobilized on chitosan crosslinked with citrate and the biosensor used for the determination of rosmarinic acid by square-wave voltammetry. The peroxidase in the presence of hydrogen peroxide catalyzes the oxidation of rosmarinic acid to quinone and the electrochemical reduction of the product was obtained at a potential of +0.15 V vs. Ag/AgCl. Different analytical parameters influencing the biosensor response, that is, peroxidase units, pH, hydrogen peroxide concentration and parameters for the square-wave voltammetry (frequency, pulse amplitude and scan increment), were investigated. The best performance was observed for the biosensor under the following conditions: 1000 units mL−1 peroxidase, pH 7.0 and 8.3 × 10−4 mol L−1 hydrogen peroxide with a frequency of 30 Hz, pulse amplitude of 100 mV and scan increment of 5.0 mV. The biosensor gave a linear response to rosmarinic acid over the concentration range of 9.07 × 10−7 to 4.46 × 10−6 mol L−1 with a detection limit of 7.25 × 10−8 mol L−1. The recovery of rosmarinic acid in plant extracts ranged from 97.0% to 109.6% and the determination of this substance in these samples using the biosensor compared favorably with that using the capillary electrophoresis method.  相似文献   

17.
Various novel carboxymethyl pachyman-deoxycholic acid conjugates (CMPD) were synthesized using carboxymethylated pachyman (CMP) as a hydrophilic segment and Deoxycholic Acid (DOCA) as a hydrophobic segment. The degree of DOCA substitution (DS) in CMPD conjugates, which was determined by elemental analysis, can reach to 30.0, 49.2, or 54.9 DOCA groups per hundred sugar residues of CMP. Structural characteristics of these CMPD conjugates were investigated by using 1H NMR, dynamic light scattering, zeta potential, transmission electron microscopy (TEM) and fluorescence spectroscopy. The CMPD conjugates provided apparently smaller monodispersed self-aggregates in water, with mean diameters decreasing with increasing of DOCA DS in the range of 98–158 nm. Zeta potentials of the CMPD self-aggregated nanoparticles indicated that the nanoparticles were covered with negatively charged CMP shells. TEM images demonstrated that the nanoparticles were spherical in shape. The critical aggregation concentration (cac) of the CMPD nanoparticles (1.55 × 10−2–5.89 × 10−3 mg/mL) was comparatively low which implies that the CMPD self-assembled nanoparticles form at low concentration in aqueous solution.  相似文献   

18.
A novel glucose biosensor was developed, based on the immobilization of glucose oxidase (GOD) with cross-linking in the matrix of bovine serum albumin (BSA) on a Pt electrode, which was modified with gold nanoparticles decorated Pb nanowires (GNPs-Pb NWs). Pb nanowires (Pb NWs) were synthesized by an l-cysteine-assisted self-assembly route, and then gold nanoparticles (GNPs) were attached onto the nanowire surface through –SH–Au specific interaction. The morphological characterization of GNPs-Pb NWs was examined by transmission electron microscopy (TEM). Cyclic voltammetry and chronoamperometry were used to study and to optimize the electrochemical performance of the resulting biosensor. The synergistic effect of Pb NWs and GNPs made the biosensor exhibit excellent electrocatalytic activity and good response performance to glucose. The effects of pH and applied potential on the amperometric response of the biosensor have been systemically studied. In pH 7.0, the biosensor showed the sensitivity of 135.5 μA mM−1 cm−2, the detection limit of 2 μM (S/N = 3), and the response time <5 s with a linear range of 5–2200 μM. Furthermore, the biosensor exhibits good reproducibility, long-term stability and relative good anti-interference.  相似文献   

19.
Most wetlands of the Mississippi deltaic plain are isolated from riverine input due to flood control levees along the Mississippi River. These levees have altered hydrology and ecology and are a primary cause of massive wetland loss in the delta. River water is being re-introduced into coastal basins as part of a large-scale ecological engineering effort to restore the delta. We quantified freshwater, nitrogen, and phosphorus inputs to the Breton Sound Estuary for three climatically different years (2000, 2001, and 2002). Water budgets included precipitation, potential evapotranspiration, the diversion, stormwater pumps, and groundwater. Precipitation contributed 48–57% of freshwater input, while the diversion accounted for 33–48%. Net groundwater input accounted for less than 0.05% of freshwater inputs. Inputs of ammonium (NH4-N), nitrate (NO3-N), total nitrogen (TN), and total phosphorus (TP) were determined for each of the water sources. Atmospheric deposition was the most important input of NH4-N (57–62% or 1.44 × 105–2.32 × 105 kg yr−1) followed by the diversion. The diversion was the greatest source of NO3-N (67–83%, 7.78 × 105–1.64 × 106 kg yr−1) and TN (60–71%). The diversion contributed 41–60% of TP input (1.17 × 105–2.32 × 105 kg yr−1). Annual loading rates of NH4-N and NO3-N were 0.17–0.27 and 1.2–2.3 g N m−2 yr−1, respectively, for the total basin indicating strong retention of nitrogen in the basin. Nitrogen retention through denitrification and burial was estimated for the upper basin.  相似文献   

20.
A biotinylated mannotriose (Man3-bio) was dispersively immobilized in the matrix of biotinylated lactose (Gal-Glc-bio) on a streptavidin-covered, 27-MHz quartz crystal microbalance (QCM), and binding kinetics of concanavalin A (Con A) to Man3-bio in the Gal-Glc-bio matrix could be obtained from frequency decreases (mass increases) of the QCM. Association constants (Ka) and binding and dissociation rate constants (kon and koff) could be determined separately as the 1:1 and 1:2 bindings of Con A to Man3-bio on the surface. When Man3-bio was immobilized with content of 1 to 5 mol% in the matrix, the 1:1 binding of Con A to Man3-bio was obtained as Ka = (4 ± 1) × 106 M−1, kon = (4 ± 1) × 104 M−1 s−1, and koff = (12 ± 2) × 10–3 s−1. On the contrary, when Man3-bio was immobilized with content of 20 to 100 mol% in the matrix, the 1:2 binding of Con A to Man3-bio was obtained as Ka = (14 ± 2) × 106 M−1, kon = (14 ± 2) × 104 M−1 s−1, and koff = (7 ± 2) × 10–3 s−1. Thus, Ka for the 1:2 binding was 10 times larger than that for the 1:1 binding, with a three times larger binding rate constant (kon) and a three times smaller dissociation rate constant (koff). This is the first example to obtain separate kinetic parameters for the 1:1 and 1:2 bindings of lectins to carbohydrates on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号