首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol.  相似文献   

4.
5.
Lovatt CJ 《Plant physiology》1983,73(3):766-772
The capacity of intact cells of roots excised from summer squash plants (Cucurbita pepo L. cv Early Prolific Straightneck) to synthesize purine nucleotides de novo was investigated. Evidence that purine nucleotides are synthesized de novo included: (a) demonstration of the incorporation of [1-14C]glycine, [2-14C]glycine, NaH14CO3, and H14COONa into total adenine nucleotides; (b) observation that the addition of azaserine or aminopterin, known inhibitors of de novo purine synthesis in other organisms, blocked the incorporation of these precursors into adenine nucleotides; and (c) demonstration that the purine ring synthesized from these precursors was labeled in a manner consistent with the pathway for de novo purine biosynthesis found in microorganisms and animal tissues. Under optimal conditions, the activity of this pathway in roots excised from 2-day-old squash plants was 244 ± 13 nanomoles (mean ± standard error, n = 17) NaH14CO3 incorporated into ∑Ade (the sum of the adenine nucleotides, nucleoside and free base) per gram tissue during the 3-hour incubation period.

The possible occurrence of alternative enzymic reactions for the first steps of de novo purine biosynthesis was also investigated. No conclusive evidence was obtained to support the operation of alternative enzymic reactions in the intact cell of C. pepo.

  相似文献   

6.
The de novo peptide with 63-residues (MHB) has been synthesized biochemically and used for the binding of manganese (II) ions. In designed peptide, the leucine of the peptide dA1 (prototype) was replaced by His27 and Asp41 for binding the manganese (II) ions. The different chromatography studies and mass determination showed that new peptide folds into a monomeric, highly helical with a active site structure similar to the native Mn–SOD in an aqueous solution. Electron paramagnetic resonance (EPR) study suggested that the peptide binds single manganese (II) ion per molecule loosely with K D value of about 36 μM. The circular dichroism (CD) studies demonstrated that the helical contents of the peptide did not change significantly even after binding the metal ions. The SOD activity study of the Mn–peptide complex showed that the IC50 values is 8.08 μM.  相似文献   

7.
8.
Due to increasing concerns about food safety and environmental issues, bio-based production of flavonoids from safe, inexpensive, and renewable substrates is increasingly attracting attention. Here, the complete biosynthetic pathway, consisting of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS), chorismate mutase/prephenate dehydrogenase (CM/PDH), tyrosine ammonia lyase (TAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), malonate synthetase, and malonate carrier protein, was constructed using pre-made modules to overproduce (2S)-naringenin from D-glucose. Modular pathway engineering strategies were applied to the production of the flavonoid precursor (2S)-naringenin from L-tyrosine to investigate the metabolic space for efficient conversion. Modular expression was combinatorially tuned by modifying plasmid gene copy numbers and promoter strengths to identify an optimally balanced pathway. Furthermore, a new modular pathway from D-glucose to L-tyrosine was assembled and re-optimized with the identified optimal modules to enable de novo synthesis of (2S)-naringenin. Once this metabolic balance was achieved, the optimum strain was capable of producing 100.64 mg/L (2S)-naringenin directly from D-glucose, which is the highest production titer from D-glucose in Escherichia coli. The fermentation system described here paves the way for the development of an economical process for microbial production of flavonoids.  相似文献   

9.
The high glucose consumption of tumor cells even in an oxygen-rich environment, referred to as the Warburg effect, has been noted as a nearly universal biochemical characteristic of cancer cells. Targeting the glycolysis pathway has been explored as an anti-cancer therapeutic strategy to eradicate cancer based on this fundamental biochemical property of cancer cells. Oncoproteins such as Akt and c-Myc regulate cell metabolism. Accumulating studies have uncovered various molecular mechanisms by which oncoproteins affect cellular metabolism, raising a concern as to whether targeting glycolysis will be equally effective in treating cancers arising from different oncogenic activities. Here, we established a dual-regulatable FL5.12 pre-B cell line in which myristoylated Akt is expressed under the control of doxycycline, and c-Myc, fused to the hormone-binding domain of the human estrogen receptor, is activated by 4-hydroxytamoxifen. Using this system, we directly compared the effect of these oncoproteins on cell metabolism in an isogenic background. Activation of either Akt or c-Myc leads to the Warburg effect as indicated by increased cellular glucose uptake, glycolysis, and lactate generation. When cells are treated with glycolysis inhibitors, Akt sensitizes cells to apoptosis, whereas c-Myc does not. In contrast, c-Myc but not Akt sensitizes cells to the inhibition of mitochondrial function. This is correlated with enhanced mitochondrial activities in c-Myc cells. Hence, although both Akt and c-Myc promote aerobic glycolysis, they differentially affect mitochondrial functions and render cells susceptible to the perturbation of cellular metabolic programs.  相似文献   

10.
11.
12.
Marine Biotechnology - Moina micrura represents a promising model species for ecological and ecotoxicological investigations in tropical freshwater ecosystems. Illumina NovaSeq™ 6000...  相似文献   

13.
To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR) value was < 0.01, P-value was <0.01 and the fold change (FC) was >2. Subsequently, Gene Ontology (GO) categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.  相似文献   

14.
In Synthetic Biology, de novo synthesis of GC-rich constructs poses a major challenge because of secondary structure formation and mispriming. While there are many web-based tools for codon optimizing difficult regions, no method currently exists that allows for potentially phenotypically important sequence conservation. Therefore, to overcome these limitations in researching GC-rich genes and their non-coding elements, we explored the use of DMSO and betaine in two conventional methods of assembly and amplification. For this study, we compared the polymerase (PCA) and ligase-based (LCR) methods for construction of two GC-rich gene fragments implicated in tumorigenesis, IGF2R and BRAF. Though we found no benefit in employing either DMSO or betaine during the assembly steps, both additives greatly improved target product specificity and yield during PCR amplification. Of the methods tested, LCR assembly proved far superior to PCA, generating a much more stable template to amplify from. We further report that DMSO and betaine are highly compatible with all other reaction components of gene synthesis and do not require any additional protocol modifications. Furthermore, we believe either additive will allow for the production of a wide variety of GC-rich gene constructs without the need for expensive and time-consuming sample extraction and purification prior to downstream application.  相似文献   

15.
16.
Recombinant DNA technology has been employed to produce a polypeptide capable of forming pH responsive hydrophobic microdomains. The design of this peptide is based upon an idealized conceptual model in which electrostatic, hydrophobic, and hydration forces are responsible for the association of amphipathic α-helical elements. Reduction in solution pH is responsible for reducing electrostatic repulsions between similarly charged residues, promoting the hydrophobic collapse of helical elements. A polymerizable synthetic element (dn31) has been synthesized and inserted into an appropriate expression vector. A clone containing a single copy of the dn31 gene (designated dn31x1) was isolated and the corresponding gene product DN3Lx1 isolated. The physical properties of DN3Lx1 were examined in solution by gel filtration chromatography, CD, and fluorescence probe analysis. It was determined that DN3Lx1 self-associates in solution with the degree of aggregation dependent on pH and ionic strength. An initial objective of this work was to examine domain organization in higher molecular weight species containing ten or more repetitive sequences. However, attempts to express multiple repeats of DN3Lxn from concatemers were unsuccessful. © 1997 John Wiley & Sons, Inc. Biopoly 41: 521–532, 1997.  相似文献   

17.
干细胞(SC)是具有无限自我更新和分化能力的细胞,随着对SC研究的不断深入,人们发现SC与肿瘤细胞有许多共性,如无限增生能力、迁移能力及在某些条件下能相互转化,故提出了肿瘤起源于SC的学说。探讨癌、SC和癌干细胞(CSC)之间可能存在的共同信号传导通路,以便发现治疗CSC的靶位。  相似文献   

18.
Biological Trace Element Research - The effect of duration of chronic treatment with fluoride (F, 50&nbsp;mg/L as NaF) on the lipid profile, lipid droplets and triglycerides (TG) in liver was...  相似文献   

19.
对肿瘤糖生物合成的研究发现肿瘤细胞表面和分泌物中有许多结构和功能变异的O-聚糖糖蛋白。合成O-聚糖的糖基转移酶和磺基转移酶是以相关的酶家族存在的,对这些酶肿瘤调控作用的研究使我们有可能揭示肿瘤形成和糖基化之间的关系;理解和控制肿瘤细胞的反常的生物学行为并利用肿瘤中因异常O-糖基化出现的特定的抗原决定簇,设计出诊断和治疗肿瘤的新方法。  相似文献   

20.
Atherosclerotic lesions are characterized by lipid-loaded macrophages (foam cells) and hypoxic regions. Although it is well established that foam cells are produced by uptake of cholesterol from oxidized LDL, we previously showed that hypoxia also promotes foam cell formation even in the absence of exogenous lipids. The hypoxia-induced lipid accumulation results from increased triglyceride biosynthesis but the exact mechanism is unknown. Our aim was to investigate the importance of glucose in promoting hypoxia-induced de novo lipid synthesis in human macrophages. In the absence of exogenous lipids, extracellular glucose promoted the accumulation of Oil Red O-stained lipid droplets in human monocyte-derived macrophages in a concentration-dependent manner. Lipid droplet accumulation was higher in macrophages exposed to hypoxia at all assessed concentrations of glucose. Importantly, triglyceride synthesis from glucose was increased in hypoxic macrophages. GLUT3 was highly expressed in macrophage-rich and hypoxic regions of human carotid atherosclerotic plaques and in macrophages isolated from these plaques. In human monocyte-derived macrophages, hypoxia increased expression of both GLUT3 mRNA and protein, and knockdown of GLUT3 with siRNA significantly reduced both glucose uptake and lipid droplet accumulation. In conclusion, we have shown that hypoxia-induced increases in glucose uptake through GLUT3 are important for lipid synthesis in macrophages, and may contribute to foam cell formation in hypoxic regions of atherosclerotic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号