首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of molecular biology》2019,431(7):1506-1517
RNA editing is an important form of regulating gene expression and activity. APOBEC1 cytosine deaminase was initially characterized as pairing with a cofactor, A1CF, to form an active RNA editing complex that specifically targets APOB RNA in regulating lipid metabolism. Recent studies revealed that APOBEC1 may be involved in editing other potential RNA targets in a tissue-specific manner, and another protein, RBM47, appears to instead be the main cofactor of APOBEC1 for editing APOB RNA. In this report, by expressing APOBEC1 with either A1CF or RBM47 from human or mouse in an HEK293T cell line with no intrinsic APOBEC1/A1CF/RBM47 expression, we have compared direct RNA editing activity on several known cellular target RNAs. By using a sensitive cell-based fluorescence assay that enables comparative quantification of RNA editing through subcellular localization changes of eGFP, the two APOBEC1 cofactors, A1CF and RBM47, showed clear differences for editing activity on APOB and several other tested RNAs, and clear differences were observed when mouse versus human genes were tested. In addition, we have determined the minimal domain requirement of RBM47 needed for activity. These results provide useful functional characterization of RBM47 and direct biochemical evidence for the differential editing selectivity on a number of RNA targets.  相似文献   

2.

Background  

Apolipoprotein B (APOB) is an integral part of the LDL, VLDL, IDL, Lp(a) and chylomicron lipoprotein particles. The APOB pre-mRNA consists of 29 constitutively-spliced exons. APOB exists as two natural isoforms: the full-length APOB100 isoform, assembled into LDL, VLDL, IDL and Lp(a) and secreted by the liver in humans; and the C-terminally truncated APOB48, assembled into chylomicrons and secreted by the intestine in humans. Down-regulation of APOB100 is a potential therapy to lower circulating LDL and cholesterol levels.  相似文献   

3.
Editing of apolipoprotein (apo) B mRNA in liver limits the plasma LDL levels in horses, dogs, rats or mice. Species such as man or rabbit do not edit the hepatic apo B mRNA and are therefore susceptible to atherosclerosis and coronary artery disease due to elevated plasma LDL levels. The catalytic subunit APOBEC-1 is the only missing component of the apo B mRNA editing enzyme complex in the human or rabbit liver. Here we describe the generation of transgenic rabbits in which APOBEC-1 expression is mediated by the proximal promoter of the rat APOBEC-1 gene. These transgenic rabbits are healthy and fertile, and rat APOBEC-1 mRNA is expressed in liver, intestine, kidney, lung, brain and muscle. The transgenic APOBEC-1 expression is low and not sufficient to induce editing in rabbit liver. In rat, the proximal APOBEC-1 promoter demonstrates a progressive loss of CpG dinucleotide methylation towards the core promoter region that is entirely unmethylated. In the transgenic rabbits, this distinct pattern of CpG methylation is lost, and throughout the entire rat APOBEC-1 promoter, >90% of the CpGs are methylated. Thus, the weak proximal rat APOBEC-1 promoter appears to be down-regulated in the rabbit and may be species-specific.  相似文献   

4.
Apolipoprotein B (APOB) serves an essential role in the assembly and secretion of triglyceride-rich lipoproteins and lipids transport. This study was designed to clone the full-length cDNA of the chicken APOB gene, to characterize the expression profile, and investigate the differential expression between layer and broiler of the chicken APOB gene. The full-length cDNA sequence (14,150-bp) that contained a 13,896-bp ORF encoding 4,631 amino acids was obtained by RT-PCR, RACE, and bioinformatics analysis. qReal-Time PCR analysis showed that the chicken APOB gene was highly expressed in kidney, liver, and intestine. The results of differential expression showed that the APOB gene was more highly expressed in intestine and kidney in Bai'er layer than in broiler, but there was no significant difference in liver between the two breeds. The results of this study provided basic molecular information for studying the role of APOB in the energy transportation in avian species.  相似文献   

5.
6.

Background

The AID/APOBECs are deaminases that act on cytosines in a diverse set of pathways and some of them have been linked to the onset of genetic alterations in cancer. Among them, APOBEC1 is the only family member to physiologically target RNA, as the catalytic subunit in the Apolipoprotein B mRNA editing complex. APOBEC1 has been linked to cancer development in mice but its oncogenic mechanisms are not yet well understood.

Results

We analyze whether expression of APOBEC1 induces a mutator phenotype in vertebrate cells, likely through direct targeting of genomic DNA. We show its ability to increase the inactivation of a stably inserted reporter gene in a chicken cell line that lacks any other AID/APOBEC proteins, and to increase the number of imatinib-resistant clones in a human cellular model for chronic myeloid leukemia through induction of mutations in the BCR-ABL1 fusion gene. Moreover, we find the presence of an AID/APOBEC mutational signature in esophageal adenocarcinomas, a type of tumor where APOBEC1 is expressed, that mimics the one preferred by APOBEC1 in vitro.

Conclusions

Our findings suggest that the ability of APOBEC1 to trigger genetic alterations represents a major layer in its oncogenic potential. Such APOBEC1-induced mutator phenotypes could play a role in the onset of esophageal adenocarcinomas. APOBEC1 could be involved in cancer promotion at the very early stages of carcinogenesis, as it is highly expressed in Barrett''s esophagus, a condition often associated with esophageal adenocarcinoma.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0417-z) contains supplementary material, which is available to authorized users.  相似文献   

7.
Intestinal apolipoprotein B (apoB) mRNA undergoes C-to-U editing, mediated by the catalytic deaminase apobec-1, which results in translation of apoB48. Apobec1−/− mice produce only apoB100 and secrete larger chylomicron particles than those observed in wild-type (WT) mice. Here we show that transgenic rescue of intestinal apobec-1 expression (Apobec1Int/O) restores C-to-U RNA editing of apoB mRNA in vivo, including the canonical site at position 6666 and also at approximately 20 other newly identified downstream sites present in WT mice. The small intestine of Apobec1Int/O mice produces only apoB48, and the liver produces only apoB100. Serum chylomicron particles were smaller in Apobec1Int/O mice compared with those from Apobec1−/− mice, and the predominant fraction of serum apoB48 in Apobec1Int/O mice migrated in lipoproteins smaller than chylomicrons, even when these mice were fed a high-fat diet. Because apoB48 arises exclusively from the intestine in Apobec1Int/O mice and intestinal apoB48 synthesis and secretion rates were comparable to WT mice, we were able to infer the major sites of origin of serum apoB48 in WT mice. Our findings imply that less than 25% of serum apoB48 in WT mice arises from the intestine, with the majority originating from the liver.  相似文献   

8.
9.
The C->U editing of RNA is widely found in plant and animal species. In mammals it is a discrete process confined to the editing of apolipoprotein B (apoB) mRNA in eutherians and the editing of the mitochondrial tRNA for glycine in marsupials. Here we have identified and characterised apoB mRNA editing in the American opossum Monodelphus domestica. The apoB mRNA editing site is highly conserved in the opossum and undergoes complete editing in the small intestine, but not in the liver or other tissues. Opossum APOBEC-1 cDNA was cloned, sequenced and expressed. The encoded protein is similar to APOBEC-1 of eutherians. Motifs previously identified as involved in zinc binding, RNA binding and catalysis, nuclear localisation and a C-terminal leucine-rich domain are all conserved. Opossum APOBEC-1 contains a seven amino acid C-terminal extension also found in humans and rabbits, but not present in rodents. The opossum APOBEC-1 gene has the same intron/exon organisation in the coding sequence as the eutherian gene. Northern blot and RT-PCR analyses and an editing assay indicate that no APOBEC-1 was expressed in the liver. Thus the far upstream promoter responsible for hepatic expression in rodents does not operate in the opossum. An APOBEC-1-like enzyme such as might be involved in C->U RNA editing of tRNA in marsupial mitochondria was not demonstrated. The activity of opossum APOBEC-1 in the presence of both chicken and rodent auxiliary editing proteins was comparable to that of other mammals. These studies extend the origins of APOBEC-1 back 170 000 000 years to marsupials and help bridge the gap in the origins of this RNA editing process between birds and eutherian mammals.  相似文献   

10.
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC1) is an intestine-specific RNA-binding protein. However, inflammation or exposure to DNA-damaging agents can induce ectopic APOBEC1 expression, which can result in hepatocellular hyperplasia in animal models. To identify its RNA targets, FLAG-tagged APOBEC1 was immunoprecipitated from transfected HuH7.5 hepatocellular carcinoma cells and analyzed using DNA microarrays. The interleukin-8 (IL8) mRNA was the most abundant co-precipitated RNA. Exogenous APOBEC1 expression increased IL8 production by extending the half-life of the IL8 mRNA. A cluster of AU-rich elements in the 3′-UTR of IL8 was essential to the APOBEC1-mediated increase in IL8 production. Notably, IL8 mRNA did not co-immunoprecipitate with APOBEC1 from lysates of other cell types at appreciable levels; therefore, other factors may enhance the association between APOBEC1 and IL8 mRNA in a cell type-specific manner. A yeast two-hybrid analysis and siRNA screen were used to identify proteins that enhance the interaction between APOBEC1 and IL8 mRNA. Heterogeneous nuclear ribonucleoprotein Q (hnRNPQ) was essential to the APOBEC1/IL8 mRNA association in HuH7.5 cells. Of the seven hnRNPQ isoforms, only hnRNPQ6 enabled APOBEC1 to bind to IL8 mRNA when overexpressed in HEK293 cells, which expressed the lowest level of endogenous hnRNPQ6 among the cell types examined. The results of a reporter assay using a luciferase gene fused to the IL8 3′-UTR were consistent with the hypothesis that hnRNPQ6 is required for APOBEC1-enhanced IL8 production. Collectively, these data indicate that hnRNPQ6 promotes the interaction of APOBEC1 with IL8 mRNA and the subsequent increase in IL8 production.  相似文献   

11.
12.
Expression and purification to homogeneity of the apolipoprotein B mRNA editing subunit, APOBEC1, has allowed the demonstration that this apoenzyme has considerable residual enzymatic activity on a minimal apoB mRNA substrate, even in the absence of any auxiliary factors. Assay of this activity as a function of various experimental conditions has led to substantial optimization of assay conditions through the use of incomplete factorial and response surface experiments. Surprisingly, the apoenzyme is thermostable, and has a temperature optimum near 45 degrees C. We have used these optimized conditions, to assess steady-state kinetic parameters for APOBEC1 mRNA editing activity with and without the auxiliary factor, ACF. An important effect of the auxiliary factor is to broaden the temperature range of APOBEC1 activity, lowering the optimal temperature and enabling it to function optimally at lower temperatures. A model consistent with this observation is that at lower temperatures ACF promotes a conformational transition in the RNA substrate that occurs spontaneously at higher temperature. Notably, the substantial RNA editing activity of APOBEC1 alone may be responsible for the "hyperediting" observed upon overexpression of APOBEC1 in transgenic mice.  相似文献   

13.
The human polydeoxynucleotide cytidine deaminases APOBEC3A, APOBEC3C, and APOBEC3H are capable of mutating viral DNA in the nucleus, whereas APOBEC3A alone efficiently edits nuclear DNA. Deamination is rapidly followed by excision of uracil residues and can lead to double-stranded breaks. It is not known to which protein networks these DNA mutators belong. Using a yeast two-hybrid screen, we identified the human homolog of Drosophila Tribbles 3, TRIB3, as an interactor for APOBEC3A and APOBEC3C. The interaction was confirmed by co-affinity purification. Co-transfection of APOBEC3A with a TRIB3 expression vector reduced nuclear DNA editing whereas siRNA knockdown of TRIB3 increased the levels of nuclear DNA editing, indicating that TRIB3 functioned as a repressor of A3A. It also repressed A3A-associated γH2AX positive double-stranded breaks. The interaction results in degradation of A3A in a proteasome-independent manner. TRIB3 has been linked to cancer and via its own interactors and links the A3A DNA mutators to the Rb-BRCA1-ATM network. TRIB3 emerges as an important guardian of genome integrity.  相似文献   

14.
Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV). The best characterized members of this family are APOBEC3G (A3G) and APOBEC3F (A3F) and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif). Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.  相似文献   

15.
Plastids (chloroplasts) of higher plants exhibit two types of conversional RNA editing: cytidine-to-uridine editing in mRNAs and adenosine-to-inosine editing in at least one plastid genome-encoded tRNA, the tRNA-Arg(ACG). The enzymes catalyzing RNA editing reactions in plastids are unknown. Here we report the identification of the A-to-I tRNA editing enzyme from chloroplasts of the model plant Arabidopsis thaliana. The protein (AtTadA) has an unusual structure in that it harbors a large N-terminal domain of >1000 amino acids, which is not required for catalytic activity. The C-terminal region of the protein displays sequence similarity to tadA, the tRNA adenosine deaminase from Escherichia coli. We show that AtTadA is imported into chloroplasts in vivo and demonstrate that the in vitro translated protein triggers A-to-I editing in the anticodon of the plastid tRNA-Arg(ACG). Suppression of AtTadA gene expression in transgenic Arabidopsis plants by RNAi results in reduced A-to-I editing in the chloroplast tRNA-Arg(ACG). The RNAi lines display a mild growth phenotype, presumably due to reduced chloroplast translational efficiency upon limited availability of edited tRNA-Arg(ACG).  相似文献   

16.
APOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing. In this report we tested whether ACF may have the ability to regulate nuclear export of apoB mRNA to the sites of translation in the cytoplasm. Using mouse models of obesity-induced insulin resistance and primary hepatocyte cultures we demonstrated that both nuclear retention of ACF and apoB mRNA editing were reduced in the livers of hyperinsulinemic obese mice relative to lean controls. Coincident with an increase in the recovery of ACF in the cytoplasm was an increase in the proportion of total cellular apoB mRNA recovered in cytoplasmic extracts. Cytoplasmic ACF from both lean controls and obese mouse livers was enriched in endosomal fractions associated with apoB mRNA translation and ApoB lipoprotein assembly. Inhibition of ACF export to the cytoplasm resulted in nuclear retention of apoB mRNA and reduced both intracellular and secreted ApoB protein in primary hepatocytes. The importance of ACF for modulating ApoB was supported by the finding that RNAi knockdown of ACF reduced ApoB secretion. An additional discovery from this study was the finding that leptin is a suppressor ACF expression. Dyslipidemia is a common pathology associated with insulin resistance that is in part due to the loss of insulin controlled secretion of lipid in ApoB-containing very low density lipoproteins. The data from animal models suggested that loss of insulin regulated ACF trafficking and leptin regulated ACF expression may make an early contribution to the overall pathology associated with very low density lipoprotein secretion from the liver in obese individuals.  相似文献   

17.
18.
Enzymatic deamination of bases in DNA or RNA leads to an alteration of flow of genetic information. Adenosine deaminases edit RNA (ADARs, TADs). Specialized cytidine deaminases are involved in RNA/DNA editing in lipid metabolism (APOBEC1) and in innate (APOBEC3 family) and humoral (AID) immunity. APOBEC2 is required for proper muscle development and, along with AID, was implicated in demethylation of DNA. The functions of APOBEC4, APOBEC5, and other deaminases recently discovered by bioinformatics approaches are unknown. What is the basis for the diverse biological functions of enzymes with similar enzyme structure and the same principal enzymatic reaction? AID, APOBEC1, lamprey CDA1, and APOBEC3G enzymes cause uracil DNA glycosylase-dependent induction of mutations when overproduced ectopically in bacteria or yeast. APOBEC2, on the contrary, is nonmutagenic. We studied the effects of the expression of various deaminases in yeast and bacteria. The mutagenic specificities of four deaminases, hAID, rAPOBEC1, hAPOBEC3G, and lamprey CDA1, are strikingly different. This suggests the existence of an intrinsic component of deaminase targeting. The expression of yeast CDD1 and TAD2/TAD3, human APOBEC4, Xanthomonas oryzae APOBEC5, and deaminase encoded by Micromonas sp. gene MICPUN_56782 was nonmutagenic. A lack of a mutagenic effect for Cdd1 is expected because the enzyme functions in the salvage of pyrimidine nucleotides, and it is evolutionarily distant from RNA/DNA editing enzymes. The reason for inactivity of deaminases grouped with APOBEC2 is not obvious from their structures. This cannot be explained by protein insolubility and peculiarities of cellular distribution and requires further investigation.  相似文献   

19.
Peptide transporter 1 (SLC15A1, PepT1), excitatory amino acid transporter 3 (SLC1A1, EAAT3) and cationic amino acid transporter 1 (SLC7A1, CAT1) were identified as genes responsible for the transport of small peptides and amino acids. The tissue expression pattern of rabbit (SLC15A1, SLC7A1 and SLC1A1) across the digestive tract remains unclear. The present study investigated SLC15A1, SLC7A1 and SLC1A1 gene expression patterns across the digestive tract at different stages of development and in response to dietary protein levels. Real time-PCR results indicated that SLC15A1, SLC7A1 and SLC1A1 genes throughout the rabbits’ entire development and were expressed in all tested rabbit digestive sites, including the stomach, duodenum, jejunum, ileum, colon and cecum. Furthermore, SLC7A1 and SLC1A1 mRNA expression occurred in a tissue-specific and time-associated manner, suggesting the distinct transport ability of amino acids in different tissues and at different developmental stages. The most highly expressed levels of all three genes were in the duodenum, ileum and jejunum in all developmental stages. All increased after lactation. With increased dietary protein levels, SLC7A1 mRNA levels in small intestine and SLC1A1 mRNA levels in duodenum and ileum exhibited a significant decreasing trend. Moreover, rabbits fed a normal level of protein had the highest levels of SLC15A1 mRNA in the duodenum and jejunum (P<0.05). In conclusion, gene mRNA differed across sites and with development suggesting time and sites related differences in peptide and amino acid absorption in rabbits. The effects of dietary protein on expression of the three genes were also site specific.  相似文献   

20.

Background

The dead-end (Dnd1) gene is essential for maintaining the viability of germ cells. Inactivation of Dnd1 results in sterility and testicular tumors. The Dnd1 encoded protein, DND1, is able to bind to the 3′-untranslated region (UTR) of messenger RNAs (mRNAs) to displace micro-RNA (miRNA) interaction with mRNA. Thus, one function of DND1 is to prevent miRNA mediated repression of mRNA. We report that DND1 interacts specifically with APOBEC3. APOBEC3 is a multi-functional protein. It inhibits retroviral replication. In addition, recent studies show that APOBEC3 interacts with cellular RNA-binding proteins and to mRNA to inhibit miRNA-mediated repression of mRNA.

Methodology/Principal Findings

Here we show that DND1 specifically interacts with another cellular protein, APOBEC3. We present our data which shows that DND1 co-immunoprecipitates APOBEC3 from mammalian cells and also endogenous APOBEC3 from mouse gonads. Whether the two proteins interact directly remains to be elucidated. We show that both DND1 and APOBEC3 are expressed in germ cells and in the early gonads of mouse embryo. Expression of fluorescently-tagged DND1 and APOBEC3 indicate they localize to the cytoplasm and when DND1 and APOBEC3 are expressed together in cells, they sequester near peri-nuclear sites.

Conclusions/Significance

The 3′-UTR of mRNAs generally encode multiple miRNA binding sites as well as binding sites for a variety of RNA binding proteins. In light of our findings of DND1-APOBEC3 interaction and taking into consideration reports that DND1 and APOBEC3 bind to mRNA to inhibit miRNA mediated repression, our studies implicate a possible role of DND1-APOBEC3 interaction in modulating miRNA-mediated mRNA repression. The interaction of DND1 and APOBEC3 could be one mechanism for maintaining viability of germ cells and for preventing germ cell tumor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号