首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the extent and structure of genetic variation in dengue viruses (DENV) on a restricted spatial and temporal scale, we sequenced the E (envelope) genes of DENV-1, -2, and -3 isolates collected in 2001 from children enrolled in a prospective school-based study in Kamphaeng Phet, Thailand, and diagnosed with dengue disease. Our analysis revealed substantial viral genetic variation in both time and space, with multiple viral lineages circulating within individual schools, suggesting the frequent gene flow of DENV into this microenvironment. More-detailed analyses of DENV-2 samples revealed strong clustering of viral isolates within individual schools and evidence of more-frequent viral gene flow among schools closely related in space. Conversely, we observed little evolutionary change in those viral isolates sampled over multiple time points within individual schools, indicating a low rate of mutation fixation. These results suggest that frequent viral migration into Kamphaeng Phet, coupled with population (school) subdivision, shapes the genetic diversity of DENV on a local scale, more so than in situ evolution within school catchment areas.  相似文献   

2.
Revealing the patterns and determinants of the spread of dengue virus (DENV) at local scales is central to understanding the epidemiology and evolution of this major human pathogen. We performed a phylogenetic analysis of the envelope (E) genes of DENV-1, -2, -3, and -4 isolates (involving 97, 23, 5, and 74 newly collected sequences, respectively) sampled from school-based cohort and village-based cluster studies in Kamphaeng Phet, Thailand, between 2004 and 2007. With these data, we sought to describe the spatial and temporal patterns of DENV spread within a rural population where a future vaccine efficacy trial is planned. Our analysis revealed considerable genetic diversity within the study population, with multiple lineages within each serotype circulating for various lengths of time during the study period. These results suggest that DENV is frequently introduced into both semi-urban and rural areas in Kamphaeng Phet from other populations. In contrast, the persistence of viral lineages across sampling years was observed less frequently. Analysis of phylogenetic clustering indicated that DENV transmission was highly spatially and temporally focal, and that it occurred in homes rather than at school. Overall, the strength of temporal clustering suggests that seasonal bottlenecks in local DENV populations facilitate the invasion and establishment of viruses from outside of the study area, in turn reducing the extent of lineage persistence.  相似文献   

3.

Background

Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites.

Methodology

Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts.

Findings

The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control programs.  相似文献   

4.

Background

Dengue viruses are a major cause of morbidity in tropical and subtropical regions of the world. Inapparent dengue is an important component of the overall burden of dengue infection. It provides a source of infection for mosquito transmission during the course of an epidemic, yet by definition is undetected by health care providers. Previous studies of inapparent or subclinical infection have reported varying ratios of symptomatic to inapparent dengue infection.

Methodology/Principal Findings

In a prospective study of school children in Northern Thailand, we describe the spatial and temporal variation of the symptomatic to inapparent (S:I) dengue illness ratio. Our findings indicate that there is a wide fluctuation in this ratio between and among schools in a given year and within schools over several dengue seasons. The most important determinants of this S:I ratio for a given school were the incidence of dengue infection in a given year and the incidence of infection in the preceding year. We found no association between the S:I ratio and age in our population.

Conclusions/Significance

Our findings point to an important aspect of virus-host interactions at either a population or individual level possibly due to an effect of heterotypic cross-reactive immunity to reduce dengue disease severity. These findings have important implications for future dengue vaccines.  相似文献   

5.
6.
7.

Background

Dengue is a mosquito-borne infectious disease that constitutes a growing global threat with the habitat expansion of its vectors Aedes aegyti and A. albopictus and increasing urbanization. With no effective treatment and limited success of vector control, dengue vaccines constitute the best control measure for the foreseeable future. With four interacting dengue serotypes, the development of an effective vaccine has been a challenge. Several dengue vaccine candidates are currently being tested in clinical trials. Before the widespread introduction of a new dengue vaccine, one needs to consider how best to use limited supplies of vaccine given the complex dengue transmission dynamics and the immunological interaction among the four dengue serotypes.

Methodology/Principal Findings

We developed an individual-level (including both humans and mosquitoes), stochastic simulation model for dengue transmission and control in a semi-rural area in Thailand. We calibrated the model to dengue serotype-specific infection, illness and hospitalization data from Thailand. Our simulations show that a realistic roll-out plan, starting with young children then covering progressively older individuals in following seasons, could reduce local transmission of dengue to low levels. Simulations indicate that this strategy could avert about 7,700 uncomplicated dengue fever cases and 220 dengue hospitalizations per 100,000 people at risk over a ten-year period.

Conclusions/Significance

Vaccination will have an important role in controlling dengue. According to our modeling results, children should be prioritized to receive vaccine, but adults will also need to be vaccinated if one wants to reduce community-wide dengue transmission to low levels.  相似文献   

8.
9.

Introduction

Long-term disease surveillance data provide a basis for studying drivers of pathogen transmission dynamics. Dengue is a mosquito-borne disease caused by four distinct, but related, viruses (DENV-1-4) that potentially affect over half the world''s population. Dengue incidence varies seasonally and on longer time scales, presumably driven by the interaction of climate and host susceptibility. Precise understanding of dengue dynamics is constrained, however, by the relative paucity of laboratory-confirmed longitudinal data.

Methods

We studied 10 years (2000–2010) of laboratory-confirmed, clinic-based surveillance data collected in Iquitos, Peru. We characterized inter and intra-annual patterns of dengue dynamics on a weekly time scale using wavelet analysis. We explored the relationships of case counts to climatic variables with cross-correlation maps on annual and trimester bases.

Findings

Transmission was dominated by single serotypes, first DENV-3 (2001–2007) then DENV-4 (2008–2010). After 2003, incidence fluctuated inter-annually with outbreaks usually occurring between October and April. We detected a strong positive autocorrelation in case counts at a lag of ∼70 weeks, indicating a shift in the timing of peak incidence year-to-year. All climatic variables showed modest seasonality and correlated weakly with the number of reported dengue cases across a range of time lags. Cases were reduced after citywide insecticide fumigation if conducted early in the transmission season.

Conclusions

Dengue case counts peaked seasonally despite limited intra-annual variation in climate conditions. Contrary to expectations for this mosquito-borne disease, no climatic variable considered exhibited a strong relationship with transmission. Vector control operations did, however, appear to have a significant impact on transmission some years. Our results indicate that a complicated interplay of factors underlie DENV transmission in contexts such as Iquitos.  相似文献   

10.
11.
Dengue, caused by the four serotypes of dengue virus (DENV), is the most prevalent mosquito-borne viral disease of humans. To examine the incidence and transmission of dengue, the authors performed a prospective community-based cohort study in 5,545 children aged 2–14 years in Managua, Nicaragua, between 2004 and 2010. Children were provided with medical care through study physicians who systematically recorded medical consult data, and yearly blood samples were collected to evaluate DENV infection incidence. The incidence of dengue cases observed was 16.1 cases (range 3.4–43.5) per 1,000 person-years (95% CI: 14.5, 17.8), and a pattern of high dengue case incidence every other year was observed. The incidence of DENV infections was 90.2 infections (range 45.2–105.3) per 1,000 person-years (95% CI: 86.1, 94.5). The majority of DENV infections in young children (<6 years old) were primary (60%) and the majority of infections in older children (≥9 years of age) were secondary (82%), as expected. The incidence rate of second DENV infections (121.3 per 1,000 person-years; 95% CI: 102.7, 143.4) was significantly higher than the incidence rate of primary DENV infections (78.8 per 1,000 person-years; 95% CI: 73.2, 84.9). The rigorous analytic methodology used in this study, including incidence reporting in person-years, allows comparison across studies and across different infectious diseases. This study provides important information for understanding dengue epidemiology and informing dengue vaccine policy.  相似文献   

12.
Dengue virus is an arthropod-borne pathogen that is transmitted to humans primarily by Aedes spp.mosquitos,causing the acute infectious disease,dengue fever (DF).Until 2019,no dengue outbreak had been reported in Hainan Province for over20 years.However,in early September of 2019,an increasing number of infected cases appeared and the DF outbreak lasted for over one month in Haikou City,Hainan Province.In our study,we collected 97 plasma samples from DF patients at three hospitals,as well as 1585 mosquito larvae samples from puddles in different areas of Haikou.There were 49(50.5%) plasma samples found to be strongly positive and 9 (9.3%) plasma samples were weakly positive against the NS1 antigen.We discovered DENV both in the patient's plasma samples and mosquito larvae samples,and isolated the virus from C6/36 cells inoculated with the acute phase serum of patients.Phylogenetic analysis revealed that the new strains were the most closely related to the epidemic strain in the southern regions of China,belonging to lineage IV,genotype I,DENV-1.Compared to the seven closest strains from neighboring countries and provinces,a total of 18 amino acid mutations occurred in the coding sequences (CDS) of the new isolated strain,DENV1 HMU-HKU-2.Our data shows that dengue virus is re-emerged in Hainan,and pose new threats for public health.Thus regular molecular epidemiological surveillance is necessary for control and prevention of DENV transmission.  相似文献   

13.
登革病毒检测技术研究进展   总被引:1,自引:0,他引:1  
登革病毒可导致登革热、登革出血热和登革休克综合征,准确快速的早期诊断对其预后非常关键,因此登革病毒检测技术的发展势在必行。在此,我们简要综述目前的登革病毒分离、血清学检测、分子生物学检测技术进展。  相似文献   

14.
Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1) primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2) the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR) model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (), suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period separating amplifications of dengue may be explained by cycling in immunity with stochastic introductions.  相似文献   

15.
16.
17.
The American/Asian genotype of Dengue virus type 2 (DENV-2) was introduced into the Americas in the 80′s. Although there is no data showing when this genotype was first introduced into Brazil, it was first detected in Brazil in 1990. After which the virus spread throughout the country and major epidemics occurred in 1998, 2007/08 and 2010. In this study we sequenced 12 DENV-2 genomes obtained from serum samples of patients with dengue fever residing in São José do Rio Preto, São Paulo (SJRP/SP), Brazil, in 2008. The whole open reading frame or envelope sequences were used to perform phylogenetic, phylogeographic and evolutionary analyses. Isolates from SJRP/SP were grouped within one lineage (BR3) close to isolates from Rio de Janeiro, Brazil. Isolates from SJRP were probably introduced there at least in 2007, prior to its detection in the 2008 outbreak. DENV-2 circulation in Brazil is characterized by the introduction, displacement and circulation of three well-defined lineages in different times, most probably from the Caribbean. Thirty-seven unique amino acid substitutions were observed among the lineages, including seven amino acid differences in domains I to III of the envelope protein. Moreover, we dated here, for the first time, the introduction of American/Asian genotype into Brazil (lineage BR1) to 1988/89, followed by the introduction of lineages BR2 (1998–2000) and BR3 (2003–05). Our results show a delay between the introduction and detection of DENV-2 lineages in Brazil, reinforcing the importance and need for surveillance programs to detect and trace the evolution of these viruses. Additionally, Brazilian DENV-2 differed in genetic diversity, date of introduction and geographic origin and distribution in Brazil, and these are important factors for the evolution, dynamics and control of dengue.  相似文献   

18.
Bluetongue virus (BTV) is a midge-borne member of the genus Orbivirus that causes an eponymous debilitating livestock disease of great agricultural impact and which has expanded into Europe in recent decades. Reassortment among the ten segments comprising the double-stranded (ds) RNA genome of BTV has played an important role in generating the epidemic strains of this virus in Europe. In this study, we investigated the dynamics of BTV genome segment evolution utilizing time-structured data sets of complete sequences from four segments, totalling 290 sequences largely sampled from ruminant hosts. Our analysis revealed that BTV genome segments generally evolve under strong purifying selection and at substitution rates that are generally lower (mean rates of ~0.5–7 × 10−4 nucleotide substitutions per site, per year) than vector-borne positive-sense viruses with single-strand (ss) RNA genomes. These also represent the most robust estimates of the nucleotide substitution rate in a dsRNA virus generated to date. Additionally, we determined that patterns of geographic structure and times to most recent common ancestor differ substantially between each segment, including a relatively recent origin for the diversity of segment 10 within the past millennium. Together, these findings demonstrate the effect of reassortment to decouple the evolutionary dynamics of BTV genome segments.  相似文献   

19.
Keeping in view the complications and the case fatality associated with dengue virus, several serologic tests have been developed. However, the major drawback of these serologic tests is the need for a venous blood sample obtained by invasive venipuncture. As a noninvasive alternative, saliva provides a body fluid that contains antibodies of diagnostic importance. Hence, the detection of DEN-specific IgM and IgG antibodies in serum and saliva from 80 patients was compared. Salivary IgM antibodies were detected in 100% of the serum IgM-positive samples and in 30% of the serum samples that were negative for IgM antibodies. Salivary IgG antibodies were detected in 93.3% of the serum samples that were positive for anti-dengue IgG antibodies and in none of the serum IgG-negative cases. None of the specimens from the healthy controls showed the presence of IgM or IgG antibodies. The detection of both IgG and IgM antibodies in saliva correlated well with the serum IgG and IgM detection by the ELISA test (r = 0.6322 and r = 0.4227). Detection of salivary IgM antibodies by ELISA showed 100% sensitivity, 70% specificity, 90.9% positive predictive value, and 100% negative predictive value. The detection of IgG in saliva proved to be a promising tool as the sensitivity, specificity, positive predictive value, and negative predictive value were found out to be 93.3%, 100%, 100%, and 83.3%, respectively. Thus, from this study we conclude that the detection of DEN-specific salivary IgG and IgM antibodies are useful markers for dengue infection.  相似文献   

20.
登革热是一种最流行的蚊媒传播传染病 ,近二十年来其流行呈上升趋势 ,本文从现代分子生物学和分子进化角度 ,对登革热的流行趋势进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号