首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con‐ or hetero‐specific sympatric neighbor genotypes with a shared site‐level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontii and S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant‐community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co‐evolution among herbaceous taxa, and evolution of native species during exotic plants invasion, and taken together, refutes the concept that plant communities are always random associations.  相似文献   

2.
We examined the hypothesis that genotypic variation among populations of commonly co‐occurring phreatophytic trees (Populus fremontii, Salix gooddingii) and the shrub (Salix exigua) regulates aboveground net primary productivity (ANPP) at a hot site at the edge of the species’ distribution. We used a provenance trial in which replicated genotypes from populations varying in mean annual temperature were transplanted to a common garden adjacent to the Lower Colorado River in southeastern California. The garden environment represented an extreme maximum temperature for the study species. Four major findings emerged: (1) Genotypic variation in ANPP was significant for all species with broad‐sense heritability (H2) across populations of 0.11, 0.13, and 0.10 for P. fremontii, S. gooddingii, and S. exigua, respectively, and within‐population H2 ranging from 0.00 to 0.25, 0.00 to 0.44, and 0.02 to 0.21, respectively. (2) Population ANPP decreased linearly as mean annual maximum temperature (MAMT) transfer distance increased for both P. fremontii (r2 = 0.64) and S. gooddingii (r2 = 0.37), whereas it did not change for S. exigua; (3) Populations with similar MAMT to that of the common garden were 1.5 and 1.2 times more productive than populations with 5.0 °C MAMT transfer distances for P. fremontii and S. gooddingii, respectively; and (4) Variation in regression slopes among species for the relationship between ANPP and MAMT indicate species‐specific responses to temperature. As these plant species characterize a threatened habitat type and support a diverse community that includes endangered species, ecosystem restoration programs should consider using both local genotypes and productive genotypes from warmer environments to maximize productivity of riparian ecosystems in the face of global climate change.  相似文献   

3.
As part of a restoration project, multiple genotypes of two tree species, Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii), and one shrub species, Coyote willow (S. exigua), were experimentally planted in different proportions at the Palo Verde Ecological Reserve near Blythe, California, U.S.A. These common woody plant species are important to the endangered southwestern willow flycatcher, providing perch, nesting, and foraging habitat. We conducted this study to evaluate plant species proportion and plant genotype effects on the arthropod community, the prey base for the endangered southwestern willow flycatcher. Three patterns emerged. First, plant species proportions were important; the arthropod community had the greatest richness and diversity (H′) when Goodding's willow proportion was high and Fremont cottonwood proportion was lower; that is, fewer Fremont cottonwoods are required to positively affect overall arthropod diversity. Second, we found significant genotypic effects, for all three plant species, on arthropod species accumulation. Third, while both planting proportion and genotype effects were significant, we found that the effect of planting proportion on arthropod richness was about twice as large as the effect of plant genotype. This shows that both plant species proportions and genotype should be utilized in restoration projects to maximize habitat heterogeneity and arthropod richness. Similar studies can determine which planting proportion and specific genotypes may result in a more favorable arthropod prey base for the southwestern willow flycatcher and other species of concern. Greater attention to planting design and genotype can result in significant gains in diversity at little or no additional project cost.  相似文献   

4.
Restoration of wetland and associated ecosystems is a major goal of land management agencies throughout the world. On the lower Colorado River, creation of riparian forests is planned to mitigate riparian habitat degradation by historic land-use conversions and river management. Current restoration practices use propagated plant stock. If direct seeding can be implemented, genetic and structural diversity could be enhanced at restoration sites even while reducing costs compared to vegetative propagation methods. A small-scale field study was implemented in Cibola, Arizona, to determine the effectiveness of direct seeding of Fremont cottonwood (Populus fremontii), Goodding's willow (Salix gooddingii), and coyote willow (S. exigua). For the first growing season, establishment of Fremont cottonwood averaged 7% of pure live seed rates for all treatments combined, whereas establishment of willows was less than 1%. Volunteer species were abundant, with grasses dominating cover and biomass after one growing season. Saltcedar (Tamarix ramosissima) established in abundance, but showed lower growth rates than Fremont cottonwood during the first growing season. Monitoring for three growing seasons indicated higher growth rates and survival of Fremont cottonwood compared to all volunteer species. Study results indicated that direct seeding of Fremont cottonwood is likely to be an efficient method for tree re-vegetation. Additional studies are required for willow species to determine if establishment from seed can be increased through enhanced weed control and elimination of Fremont cottonwood from the seed mix.  相似文献   

5.
Decoupling of climate and hydrology combined with introduction of non-native species creates novel abiotic and biotic conditions along highly regulated rivers. Tamarix, a non-native shrub, dominates riparian assemblages along many waterways in the American Southwest, including the Colorado River through Grand Canyon. We conducted a tree-ring study to determine the relative influences of climate and hydrology on Tamarix establishment in Grand Canyon. Riparian vegetation was sparse and annually scoured by large floods until completion of Glen Canyon Dam, which allowed pioneer species, including Tamarix, to expand. Post-dam floods in the mid-1980s were associated with high Tamarix mortality but also initiated a large establishment event. Subsequent establishment has been low but continuous with some exceptions. From 1984 to 2006 establishment increased during years of high, late-summer flows followed by years of low precipitation. This combination provided moist surfaces for Tamarix establishment and may have caused reduced erosion of seedlings or reduced competition from native plants. Attempts to mimic pre-dam floods for ecosystem restoration through planned flood releases also have affected Tamarix establishment. Early (March 1996) and late (November 2004) restoration floods limited establishment, but a small restoration flood in May 2000 followed by steady summer flows permitted widespread establishment. Flood restoration is not expected to prevent Tamarix spread in this system because historic flood timing in May–July coincides with seed release. To decrease future Tamarix establishment, river managers should avoid floods during peak Tamarix seed release, which encompasses the historic spring and early summer flooding period. Tamarix dominance may be reduced by early spring floods that initiate asexual reproduction of clonal shrubs (e.g., Salix exigua, Pluchea sericea).  相似文献   

6.
We compared processing rates (k d) for leaves of the native willow (Salix exigua Nutt.) and cottonwood (Populus fremontii Wats.) to those of the non-native salt cedar (Tamarix chinensis Lour.) in the regulated Colorado River, U.S.A. Leaf packs of each species were incubated at Lees Ferry, approximately 26 km below Glen Canyon Dam, Arizona. Leaf packs were processed at 2, 21, 46, 84 and 142-d intervals. Water temperatures remained relatively constant (10 °C, SE ± 1 °C) during the study. There were significant differences in processing rates between species, with P. fremontii showing the fastest breakdown. After 142 d, only 20% of the P. fremontii leaf mass remained, whereas 30% and 52% of leaf masses remained for T. chinensis and S. exigua, respectively. The k d value for P. fremontii was 0.0062 compared to 0.0049 and 0.0038 for T. chinensis and S. exigua, respectively. Invertebrate colonization was not significantly different between native and non-native plant species with oligochaetes the most abundant animal colonizing the leaf packs. Dual stable isotope analysis showed that leaf material was not the primary food for invertebrates associated with leaf packs. Processing rates for all leaf types were slow in the regulated Colorado River compared to rates reported in many other systems. This is likely due to the lack of caddisfly and stonefly shredders and perhaps slow metabolic rates by microbes.  相似文献   

7.
We used species distribution modeling to investigate the potential effects of climate change on 24 species of Neotropical anurans of the genus Melanophryniscus. These toads are small, have limited mobility, and a high percentage are endangered or present restricted geographical distributions. We looked at the changes in the size of suitable climatic regions and in the numbers of known occurrence sites within the distribution limits of all species. We used the MaxEnt algorithm to project current and future suitable climatic areas (a consensus of IPCC scenarios A2a and B2a for 2020 and 2080) for each species. 40% of the species may lose over 50% of their potential distribution area by 2080, whereas 28% of species may lose less than 10%. Four species had over 40% of the currently known occurrence sites outside the predicted 2080 areas. The effect of climate change (decrease in climatic suitable areas) did not differ according to the present distribution area, major habitat type or phylogenetic group of the studied species. We used the estimated decrease in specific suitable climatic range to set a conservation priority rank for Melanophryniscus species. Four species were set to high conservation priority: M. montevidensis, (100% of its original suitable range and all known occurrence points potentially lost by 2080), M. sp.2, M. cambaraensis, and M. tumifrons. Three species (M. spectabilis, M. stelzneri, and M. sp.3) were set between high to intermediate priority (more than 60% decrease in area predicted by 2080); nine species were ranked as intermediate priority, while eight species were ranked as low conservation priority. We suggest that monitoring and conservation actions should be focused primarily on those species and populations that are likely to lose the largest area of suitable climate and the largest number of known populations in the short-term.  相似文献   

8.
Tamarix ramosissima (Tamaricaceae) is a woody phreatophyte that has invaded thousands of hectares of floodplain habitat in the southwestern U.S. In this study, we examined the response of gas exchange and stem sap flow of Tamarix and three co-occurring native phreatophytes (Pluchea sericea (Asteraceae), Prosopis pubescens (Fabaceae) and Salix exigua (Salicaceae)) to drought conditions in an early successional floodplain community in the Mojave Desert of southern Nevada. In an analysis of a size/age series of each species across the whole floodplain (both mature and successional stands), stem growth rate was lowest for Tamarix. However, along the same successional chronosequence, Tamarix came to dominate the 50+ year old stands with dense thickets of high stem density. Xylem sap flow, when expressed on a sapwood area basis, was highest in Tamarix under early drought conditions, but comparable between the four species toward the end of the summer dry season. Multivariate analysis of the gas exchange data indicated that the four species differentiated based on water use under early drought conditions and separated based on plant water potential and leaf temperature (indices of drought effects) at the end of the summer dry season. This analysis suggests that the invasive Tamarix is the most drought tolerant of the four species, whereas Salix transpires the most water per unit leaf surface area and is the least tolerant of seasonal water stress. Therefore, Salix appears to be well adapted to early successional communities. However, as floodplains in this arid region become more desiccated with age, Tamarix assumes greater dominance due to its superior drought tolerance relative to native phreatophytes and its ability to produce high density stands and high leaf area. Received: 8 August 1996 / Accepted: 29 January 1997  相似文献   

9.
Tamarix aphylla is an evergreen tree that has invaded the drawdown zone of Lake Mead, a large reservoir on the Lower Colorado River. We performed competition experiments between T. aphylla and T. ramosissima, and between T. aphylla and the native tree Salix gooddingii. Root:shoot ratios and biomass were higher in S. gooddingii than both Tamarix species, and T. ramosissima grew taller than T. aphylla and S. gooddingii when treatments with single plants and no competition were compared. Tamarix aphylla outcompeted the native S. gooddingii, but had competitive abilities that were slightly inferior to T. ramosissima. The competitive abilities of T. aphylla may and help explain why this species is not as widespread as its congeners, although because of T. aphylla's larger size, the species may be as serious a threat to native riparian ecosystems as T. ramosissima. These results indicate that management actions should be taken to ensure that T. aphylla does not further invade riparian ecosystems in the southwestern United States.  相似文献   

10.
Amphibians and reptiles (herpetofauna) have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. Our objective was to relate variation in herpetofauna abundance to changes in habitat caused by a beetle used for Tamarix biocontrol (Diorhabda carinulata; Coleoptera: Chrysomelidae) and riparian restoration. During 2013 and 2014, we measured vegetation and monitored herpetofauna via trapping and visual encounter surveys (VES) at locations affected by biocontrol along the Virgin River in the Mojave Desert of the southwestern United States. Twenty‐one sites were divided into four riparian stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence or absence of restoration. Restoration activities consisted of mechanically removing non‐native trees, transplanting native trees, and restoring hydrologic flows. Restored sites had three times more total lizard and eight times more yellow‐backed spiny lizard (Sceloporus uniformis) captures than other stand types. Woodhouse's toad (Anaxyrus woodhousii) captures were greatest in unrestored and restored Tam‐Pop/Sal sites. Results from VES indicated that herpetofauna abundance was greatest in the restored Tam‐Pop/Sal site compared with the adjacent unrestored Tam‐Pop/Sal site. Tam sites were characterized by having high Tamarix cover, percent canopy cover, and shade. Restored Tam‐Pop/Sal sites were most similar in habitat to Tam‐Pop/Sal sites. Two species of herpetofauna (spiny lizard and toad) were found to prefer habitat components characteristic of restored Tam‐Pop/Sal sites. Restored sites likely supported higher abundances of these species because restoration activities reduced canopy cover, increased native tree density, and restored surface water.  相似文献   

11.
The Lower Colorado River Multi‐species Conservation Program (MSCP) is charged with restoring habitat for 26 species such as the southwestern willow flycatcher (Empidonax traillii extimus) impacted by water development projects on the river. As of 2015, the MSCP had spent $200 million to create 1,200 ha of habitat at nine sites, but the benefits to these insectivorous birds and other target species have not been quantified. Many MSCP projects emphasized riparian plantings of willow (Salix exigua, Salix gooddingii) and cottonwood (Populus fremontii) on high terraces disconnected from the river. We documented prey availability for insectivores in constructed habitats as an indicator of restoration effectiveness. Using sticky traps as a proxy to estimate aerial insect flux, we found the number of aquatic insects, proportion of aquatic insects, total number of insects, and number of insect orders were all significantly lower in MSCP plantation sites than at the river's edge. Riparian restoration sites over 100 m from the river had only 4% of the aquatic insects, 20% of the total insects, and only half as many insect orders as sites adjacent to the river. Thus, food availability and overall habitat quality for insectivores are likely low in restoration sites that are distant from the river.  相似文献   

12.
 Leaf carbon isotope discrimination (Δ), seasonal estimates of the leaf-to-air water vapor gradient on a molar basis (ω), and leaf nitrogen contents were examined in three riparian tree species (Populus fremontii, P. angustifolia, and Salix exigua) along elevational transects in northern and southern Utah USA (1500–2670 m and 600–1820 m elevational gradients, respectively). The ω values decreased with elevation for all species along transects. Plants growing at higher elevations exhibited lower Δ values than plants at lower elevations (P. fremontii, 22.9‰ and 19.5‰, respectively; P. angustifolia, 23.2‰ and 19.2‰, respectively; and S.␣exigua, 21.1‰ and 19.1‰, respectively). Leaf nitrogen content increased with elevation for all species, suggesting that photosynthetic capacity at a given intercellular carbon dioxide concentration was greater at higher elevations. Leaf Δ and nitrogen content values were highly correlated, implying that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations. No significant interannual differences were detected in carbon isotope discrimination. Received: 25 February 1996 / Accepted: 8 September 1996  相似文献   

13.
Climate change and invasive species are two of the most serious threats of biodiversity. A general concern is that these threats interact, and that a globally warming climate could favour invasive species. In this study we investigate the invasive potential of one of the “100 of the world’s worst invasive species”, the big-headed ant Pheidole megacephala. Using ecological niche models, we estimated the species’ potential suitable habitat in 2020, 2050 and 2080. With an ensemble forecast obtained from five different modelling techniques, 3 Global Circulation Models and 2 CO2 emission scenarios, we generated world maps with suitable climatic conditions and assessed changes, both qualitatively and quantitatively. Almost one-fifth (18.5 %) of the landmass currently presents suitable climatic conditions for P. megacephala. Surprisingly, our results also indicate that the invasion of big-headed ants is not only unlikely to benefit from climate change, but may even suffer from it. Our projections show a global decrease in the invasive potential of big-headed ants as early as 2020 and becoming even stronger by 2080 reaching a global loss of 19.4 % of area with favourable climate. The decrease is observable in all 6 broad regions, being greatest in the Oceania and lowest in Europe.  相似文献   

14.
In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day−1), focusing on the three dominant cottonwood and willows (family Salicaceae) in California’s San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day−1) and low shoot:root ratios (<1.5 g g−1) strongly predicted survival, but there was no evidence that plants increased belowground allocation in response to drawdown. Leaf δ13C values shifted most for the best-surviving species (net change of +3.5 per mil from −30.0 ± 0.3 control values for Goodding’s willow, Salix gooddingii), implying an important role of increased water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m2 kg−1). The functional responses exhibited by Goodding’s willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.  相似文献   

15.
Enzyme electrophoresis was used to examine genetic relationships within a taxonomically complex group of diploid willows (Salix section Longifoliae). Forty-eight populations representing seven morphogeographic taxa were analyzed for 15 putative enzyme loci. Levels of genetic variation (A, P, He, and HT) differed greatly among populations, but were generally lower than those reported for other species with similar life history traits. In populations and species from southern latitudes, where populations tend to be smaller and more isolated, genetic variation decreased and population differentiation increased. Genetic identity values suggest that the section is divisible into four major elements: 1) Salix interior, 2) S. taxifolia, 3) the S. exigua group, and 4) S. melanopsis. The first three occupy eastern, southern, and western portions of the continent, respectively. Salix melanopsis is sympatric with the S. exigua group in western North America, but is ecologically distinct. The S. exigua group is differentiated into four major geographic entities: S. hindsiana from west of the Sierras in California and southwest Oregon, S. sessilifolia from west of the Cascades in central Oregon to British Columbia, and a northern and southern race of S. exigua in the Intermountain West. The relationships suggested by allozyme data do not agree with traditional taxonomic concepts. Evidence of hybridization was obtained at five points where taxa come into contact, and Salix fluviatilis may be of hybrid origin. Taxonomic confusion appears to be largely the result of frequent hybridization events and overemphasis of a few highly variable morphological traits. The section appears to be a syngameon undergoing geographic speciation, with one taxon gaining reproductive isolation by a shift in habitat preference.  相似文献   

16.
We investigated the physiological and growth responses of native (Populus fremontii S. Wats. and Salix gooddingii Ball) and exotic (Tamarix chinensis Lour.) riparian trees to ground water availability at the free‐flowing Hassayampa River, Arizona, during dry (1997) and wet (1998) years. In the drier year, all species experienced considerable water stress, as evidenced by low shoot water potentials, low leaf gas exchange rates and large amounts of canopy dieback. These parameters were significantly related to depth of ground water (DGW) in the native species, but not in T. chinensis, in 1997. Canopy dieback was greater in the native species than in T. chinensis when ground water was deep in 1997, and dieback increased rapidly at DGW > 2·5–3·0 m for the native species. Analysis of combined data from wet and dry years for T. chinensis tentatively suggests a similar physiological sensitivity to water availability and a similar DGW threshold for canopy dieback. In 1998, shoot water potential and leaf gas exchange rates were higher and canopy dieback was lower for all species because of increased water availability. However, T. chinensis showed a much larger increase in leaf gas exchange rates in the wet year than the native species. High leaf gas exchange rates, growth when water is abundant, drought tolerance and the maintenance of a viable canopy under dry conditions are characteristics that help explain the ability of T. chinensis to thrive in riparian ecosystems in the south‐western United States.  相似文献   

17.
Robert D. Dorn 《Brittonia》1998,50(2):193-210
Salix section Longifoliae occurs from Alaska to Guatemala and from the Atlantic to the Pacific. Nine taxa are here accepted as five species with one of the species including two subspecies and four varieties. the holotype of Salix taxifolia Humb., Bonpl. & Kunth represents the same taxon as the lectotype of Salix microphylla Schltdl. & Cham. Material recently called S. taxifolia is given a new name. Salix exilifolia Dorn. The name Salix fluviatilis Nutt is considered to be synonymous with S. melanopsis Nutt. One new variety is described and two new combinations are made under Salix exigua Nutt.  相似文献   

18.
Future changes in climate are imminent and they threat endangered and rare species due to habitat destruction. The Asiatic black bear (Ursus thibetanus gedrosianus) is a rare and vulnerable species whose habitat fragmentation and habitat loss decreased the size of its population significantly. Climate change is another threat to this species that is investigated in this research work. Aiming at this goal, ten species distribution models (SDMs) were applied as helpful tools for evaluating the potential effectiveness of climate change in habitat suitability of Asiatic black bear in Iran. Potential dispersal of Asiatic black bear was modeled as a function of 32 environmental variables for the current time and 2070 for 44 climate change scenarios (CC scenario) of future climate. Our results showed that modeling result depended on type of model. Our results confirmed that one of the greatest threats in the near future for Asiatic black bear was the change of suitable habitat due to climate change. All the CC scenarios showed that migration of this species would be to the north and west areas with higher elevation and that an increase in area would be more than a decrease in area in all scenarios. Recognizing and protecting potential future habitats are of the important activities to conserve this species and identify areas with conservation priority.  相似文献   

19.
As North American species’ ranges shift northward in response to climate change, populations isolated in high-elevation habitat “islands” at the southern edge of distributions are predicted to decrease in size or be extirpated. Levels of genetic structure and gene flow and the number of private alleles held within these peripheral populations can be used as a measure of the potential loss of genetic diversity due to climate change. We use GIS-based climate niche models to project geographic distributions of 15 boreal forest bird species for the year 2080 under two carbon emissions scenarios to predict the extent to which ranges will shift, leading to the extirpation of isolated populations at the southern periphery of the boreal forest. Breeding distributions of nearly all boreal bird species are predicted to expand as they shift northward, but will dramatically decrease or be completely lost from mountain populations in New York, Vermont, and New Hampshire by 2080. To examine the effect of these shifts on gene pools of migratory bird species we genotyped 178 blackpoll warblers (Setophaga striata) at nine microsatellite loci, sampling four imperiled high-elevation populations and four northern populations. In S. striata 10.4 % of microsatellite alleles were confined to populations expected to be lost due to climate change. However, these accounted for a nonsignificant percent of the genetic structure, and loss of these alleles would not significantly erode species heterozygosity or allelic richness. Our results indicate that isolated southern populations of S. striata, and possibly other migratory species with high gene flow, do not represent genetically isolated, independently evolving units. Efforts to mitigate the effect of climate change on boreal forest birds should focus on species in which peripheral populations harbor significant genetic diversity.  相似文献   

20.
Planting native riparian trees can help recover wildlife and fish habitat on a local scale, when full recovery of natural processes that sustain riparian ecosystems is infeasible. To help improve planting success, we determined which environmental factors and management practices most influenced survival of planted Populus fremontii (Fremont cottonwood) in a field experiment on the San Rafael River, Utah, U.S.A. We planted 474 approximately 2‐m‐tall trees and tracked survival for 1.25 years. We used logistic regression to evaluate whether tree height, elevation above the river channel, distance to existing cottonwood or Salix exigua (coyote willow), soil conductivity, soil texture, planting depth, planting method (mechanical auger vs. hand‐digging), and provision of natural and commercial supplements affected survival probability. Survival probability decreased with elevation above the river channel bottom and was greater in auger‐dug than hand‐dug holes. Survival probability was lower in soils with the highest salinity levels and was lower in sandy soils than soils with silt and clay. Survival may be improved by planting well above the channel to avoid flooding impacts but within 2 m above the channel in auger‐dug holes to ensure access to soil moisture. Testing soil salinity and texture in areas with suitable elevation could also help improve survival. Approximately 35% of trees survived to the end of the study period, indicating that planting can help recover riparian habitat locally, especially if survival is improved in future planting efforts. However, full recovery of desired riparian habitat throughout the floodplain will require natural flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号