首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Recent studies using germ-free, gnotobiotic microbial transplantation/conventionalization or antibiotic treatment in rodent models have highlighted the critical role of intestinal microbes on gut health and metabolic functions of the host. Genetic and environmental factors influence the abundance and type of mutualistic vs. pathogenic bacteria, each of which has preferred substrates for growth and unique products of fermentation. Whereas some fermentation products or metabolites promote gut function and health, others impair gut function, leading to compromised nutrient digestion and barrier function that adversely impact the host. Such products may also influence food intake, energy harvest and expenditure, and insulin action, thereby influencing adiposity and related metabolic outcomes. Diet composition influences gut microbiota and subsequent fermentation products that impact the host, as demonstrated by prebiotic studies using oligosaccharides or other types of indigestible fiber. Recent studies also show that dietary lipids affect specific populations of gut microbes and their metabolic end products. This review will focus on studies examining the influence of dietary fat amount and type on the gut microbiome, intestinal health and positive and negative metabolic consequences. The protective role of omega-3-rich fatty acids on intestinal inflammation will also be examined.  相似文献   

2.

Background

Intestinal bacteria are known to regulate bile acid (BA) homeostasis via intestinal biotransformation of BAs and stimulation of the expression of fibroblast growth factor 19 through intestinal nuclear farnesoid X receptor (FXR). On the other hand, BAs directly regulate the gut microbiota with their strong antimicrobial activities. It remains unclear, however, how mammalian BAs cross-talk with gut microbiome and shape microbial composition in a dynamic and interactive way.

Results

We quantitatively profiled small molecule metabolites derived from host-microbial co-metabolism in mice, demonstrating that BAs were the most significant factor correlated with microbial alterations among all types of endogenous metabolites. A high-fat diet (HFD) intervention resulted in a rapid and significant increase in the intestinal BA pool within 12 h, followed by an alteration in microbial composition at 24 h, providing supporting evidence that BAs are major dietary factors regulating gut microbiota. Feeding mice with BAs along with a normal diet induced an obese phenotype and obesity-associated gut microbial composition, similar to HFD-fed mice. Inhibition of hepatic BA biosynthesis under HFD conditions attenuated the HFD-induced gut microbiome alterations. Both inhibition of BAs and direct suppression of microbiota improved obese phenotypes.

Conclusions

Our study highlights a liver–BA–gut microbiome metabolic axis that drives significant modifications of BA and microbiota compositions capable of triggering metabolic disorders, suggesting new therapeutic strategies targeting BA metabolism for metabolic diseases.
  相似文献   

3.
Feeding strategy and diet are increasingly recognized for their roles in governing primate gut microbiome (GMB) composition. Whereas feeding strategy reflects evolutionary adaptations to a host's environment, diet is a more proximate measure of food intake. Host phylogeny, which is intertwined with feeding strategy, is an additional, and often confounding factor that shapes GMBs across host lineages. Nocturnal strepsirrhines are an intriguing and underutilized group in which to examine the links between these three factors and GMB composition. Here, we compare GMB composition in four species of captive, nocturnal strepsirrhines with varying feeding strategies and phylogenetic relationships, but nearly identical diets. We use 16S rRNA sequences to determine gut bacterial composition. Despite similar husbandry conditions, including diet, we find that GMB composition varies significantly across host species and is linked to host feeding strategy and phylogeny. The GMBs of the omnivorous and the frugivorous species were significantly more diverse than were those of the insectivorous and exudativorous species. Across all hosts, GMBs were enriched for bacterial taxa associated with the macronutrient resources linked to the host's respective feeding strategy. Ultimately, the reported variation in microbiome composition suggests that the impacts of captivity and concurrent diet do not overshadow patterns of feeding strategy and phylogeny. As our understanding of primate GMBs progresses, populations of captive primates can provide insight into the evolution of host‐microbe relationships, as well as inform future captive management protocols that enhance primate health and conservation.  相似文献   

4.
《Trends in microbiology》2023,31(8):832-844
Benefits of fasting and caloric restriction on host metabolic health are well established, but less is known about the effects on the gut microbiome and how this impacts renewal of the intestinal mucosa. What has been repeatedly shown during fasting, however, is that bacteria utilising host-derived substrates proliferate at the expense of those relying on dietary substrates. Considering the increased recognition of the gut microbiome’s role in maintaining host (metabolic) health, disentangling host–microbe interactions and establishing their physiological relevance in the context of fasting and caloric restriction is crucial. Such insights could aid in moving away from associations of gut bacterial signatures with metabolic diseases consistently reported in observational studies to potentially establishing causality. Therefore, this review aims to summarise what is currently known or still controversial about the interplay between fasting and caloric restriction, the gut microbiome and intestinal tissue physiology.  相似文献   

5.
Body mass is a strong predictor of diet and nutritional requirements across a wide range of mammalian taxa. In the case of small‐bodied primates, because of their limited gut volume, rapid food passage rate, and high metabolic rate, they are hypothesized to maintain high digestive efficiency by exploiting foods rich in protein, fats, and readily available energy. However, our understanding of the dietary requirements of wild primates is limited because little is known concerning the contributions of their gut microbiome to the breakdown and assimilation of macronutrients and energy. To study how the gut microbiome contributes to the feeding ecology of a small‐bodied primate, we analyzed the fecal microbiome composition and metabolome of 22 wild saddleback tamarins (adult body mass 360–390 g) in Northern Bolivia. Samples were analyzed using high‐throughput Illumina sequencing of the 16 S rRNA gene V3‐V5 regions, coupled with GC‐MS metabolomic profiling. Our analysis revealed that the distal microbiome of Leontocebus weddelli is largely dominated by two main bacterial genera: Xylanibacter and Hallella (34.7 ± 14.7 and 22.6 ± 12.4%, respectively). A predictive analysis of functions likely carried out by bacteria in the tamarin gut demonstrated the dominance of membrane transport systems and carbohydrate metabolism as the predominant metabolic pathways. Moreover, given a fecal metabolome composed mainly of glucose, fructose, and lactic acid (21.7 ± 15.9%, 16.5 ± 10.7%, and 6.8 ± 5.5%, respectively), the processing of highly fermentable carbohydrates appears to play a central role in the nutritional ecology of these small‐bodied primates. Finally, the results also show a potential influence of environmentally‐derived bacteria in colonizing the tamarin gut. These results indicate high energetic turnover in the distal gut of Weddell's saddleback tamarin, likely influenced by dominant bacterial taxa that facilitate dietary dependence on highly digestible carbohydrates present in nectar, plant exudates, and ripe fruits.  相似文献   

6.
Gut microbiomes perform essential services for their hosts, including helping them to digest food and manage pathogens and parasites. Performing these services requires a diverse and constantly changing set of metabolic functions from the bacteria in the microbiome. The metabolic repertoire of the microbiome is ultimately dependent on the outcomes of the ecological interactions of its member microbes, as these interactions in part determine the taxonomic composition of the microbiome. The ecological processes that underpin the microbiome's ability to handle a variety of metabolic challenges might involve rapid turnover of the gut microbiome in response to new metabolic challenges, or it might entail maintaining sufficient diversity in the microbiome that any new metabolic demands can be met from an existing set of bacteria. To differentiate between these scenarios, we examine the gut bacteria and resident eukaryotes of two generalist‐insectivore lizards, while simultaneously identifying the arthropod prey each lizard was digesting at the time of sampling. We find that the cohorts of bacteria that occur significantly more or less often than expected with arthropod diet items or eukaryotes include bacterial species that are highly similar to each other metabolically. This pattern in the bacterial microbiome could represent an early step in the taxonomic shifts in bacterial microbiome that occur when host lineages change their diet niche over evolutionary timescales.  相似文献   

7.
Previously we have shown that the Japanese macaque gut microbiome differs not by obesity per se, but rather in association with high‐fat diet (HFD) feeding. This held true for both pregnant dams, as well as their 1‐year‐old offspring, even when weaned onto a control diet. Here we aimed to examine the stability of the gut microbiome over time and in response to maternal and postweaning HFD feeding from 6 months of age, and at 1 and 3 years of age. In both cross‐sectional and longitudinal specimens, we performed analysis of the V4 hypervariable region of the 16S rRNA gene on anus swabs collected from pregnant dams and their juveniles at age 6 months to 3 years (n = 55). Extracted microbial DNA was subjected to 16S‐amplicon‐based metagenomic sequencing on the Illumina MiSeq platform. We initially identified 272 unique bacterial genera, and multidimensional scaling revealed samples to cluster by age and diet exposures. Dirichlet multinomial mixture modeling of microbiota abundances enabled identification of two predominant enterotypes to which samples sorted, characterized primarily by Treponema abundance, or lack thereof. Approximating the time of initial weaning (6 months), the Japanese macaque offspring microbiome underwent a significant state type transition which stabilized from 1 to 3 years of age. However, we also found the low abundance Treponema enterotype to be strongly associated with HFD exposure, be it during gestation/lactation or in the postweaning interval. Examination of taxonomic co‐occurrences revealed samples within the low Treponema cluster were relatively permissive (allowing for increased interactions between microbiota) whereas samples within the high Treponema cluster were relatively exclusionary (suggesting decreased interactions amongst microbiota). Taken together, these findings suggest that Treponemes are keystone species in the developing gut microbiome of the gut, and susceptible to HFD feeding in their relative abundance.  相似文献   

8.
The gut microbiome, or the community of microorganisms inhabiting the digestive tract, is often unique to its symbiont and, in many animal taxa, is highly influenced by host phylogeny and diet. In this study, we characterized the gut microbiome of the African savanna elephant (Loxodonta africana) and the African forest elephant (Loxodonta cyclotis), sister taxa separated by 2.6–5.6 million years of independent evolution. We examined the effect of host phylogeny on microbiome composition. Additionally, we examined the influence of habitat types (forest versus savanna) and diet types (crop‐raiding versus noncrop‐raiding) on the microbiome within L. africana. We found 58 bacterial orders, representing 16 phyla, across all African elephant samples. The most common phyla were Firmicutes, Proteobacteria, and Bacteroidetes. The microbiome of L. africana was dominated by Firmicutes, similar to other hindgut fermenters, while the microbiome of L. cyclotis was dominated by Proteobacteria, similar to more frugivorous species. Alpha diversity did not differ across species, habitat type, or diet, but beta diversity indicated that microbial communities differed significantly among species, diet types, and habitat types. Based on predicted KEGG metabolic pathways, we also found significant differences between species, but not habitat or diet, in amino acid metabolism, energy metabolism, and metabolism of terpenoids and polyketides. Understanding the digestive capabilities of these elephant species could aid in their captive management and ultimately their conservation.  相似文献   

9.
Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice.  相似文献   

10.
Insulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in β-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies.  相似文献   

11.

Background

Alterations in the composition of gut microbiota - known as dysbiosis - has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice.

Methodology/Principal Findings

Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters.

Conclusions/Significance

Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention.  相似文献   

12.
熊智  王连荣  陈实 《微生物学报》2018,58(11):1916-1925
高通量测序技术已经增加了人们对肠道微生物组和表观遗传学修饰的理解,将肠道微生物组和宿主表观遗传学修饰紧密联系起来,阐明了很多疾病的发生过程如免疫、代谢、心血管疾病甚至是癌症。肠道微生物组与宿主具有相互作用,与人体密不可分,相辅相成。肠道微生物组的生态失调可能诱导疾病的发生并能调控宿主表观遗传学修饰。宿主表观遗传学调控和肠道微生物组(或其代谢产物)变化的相互关系在很多疾病中都有报道。因此,肠道微生物组可作为某些疾病的诊断标记,健康肠道微生物组的移植会逆转这种微生态失调,可作为一种有效的治疗策略。本文主要探讨了肠道微生物组直接调控宿主表观修饰和通过小分子生物活性物质和其他酶辅因子间接影响表观修饰,以及基于肠道微生物组调控宿主表观修饰的诊断和治疗应用等。  相似文献   

13.
The beneficial effects of polyphenols on metabolic disorders have been extensively reported. The interaction of these compounds with the gut microbiota has been the focus of recent studies. In this review, we explored the fundamental mechanisms underlying the beneficial effects of polyphenols in relation to the gut microbiota in murine models of metabolic disorders. We analyzed the effects of polyphenols on three murine models of metabolic disorders, namely, models of a high-fat diet (HFD)-induced metabolic disorder, dextran sulfate sodium (DSS)-induced colitis, and a metabolic disorder not associated with HFD or DSS. Regardless of the model, polyphenols ameliorated the effects of metabolic disorders by alleviating intestinal oxidative stress, improving inflammatory status, and improving intestinal barrier function, as well as by modulating gut microbiota, for example, by increasing the abundance of short-chain fatty acid-producing bacteria. Consequently, polyphenols reduce circulating lipopolysaccharide levels, thereby improving inflammatory status and alleviating oxidative imbalance at the lesion sites. In conclusion, polyphenols likely act by regulating intestinal functions, including the gut microbiota, and may be a safe and suitable therapeutic agent for various metabolic disorders.  相似文献   

14.
High‐fat diet (HFD) is a well‐known risk factor for gut microbiota dysbiosis and colorectal cancer (CRC). However, evidence relating HFD, gut microbiota and carcinogenesis is limited. Our study aimed to demonstrate that HFD‐induced gut dysbiosis promoted intestinal adenoma‐adenocarcinoma sequence. In clinical study, we found that HFD increased the incidence of advanced colorectal neoplasia (AN). The expression of monocyte chemoattractant protein 1 (MCP‐1), CC chemokine receptor 2 (CCR2) and CD163 in CRC patients with HFD was significantly higher than that in CRC patients with normal diet. When it comes to the Apcmin/+ mice, HFD consumption could induce gut dysbiosis and promote intestinal carcinogenesis, accompanying with activation of MCP‐1/CCR2 axis that recruited and polarized M2 tumour‐associated macrophages. Interestingly, transfer of faecal microbiota from HFD‐fed mice to another batch of Apcmin/+ mice in the absence of HFD could also enhance carcinogenesis without significant body weight gain and induced MCP‐1/CCR2 axis activation. HFD‐induced dysbiosis could also be transmitted. Meanwhile, antibiotics cocktail treatment was sufficient to inhibit HFD‐induced carcinogenesis, indicating the vital role of dysbiosis in cancer development. Conclusively, these data indicated that HFD‐induced dysbiosis accelerated intestinal adenoma‐adenocarcinoma sequence through activation of MCP‐1/CCR2 axis, which would provide new insight into better understanding of the mechanisms and prevention for HFD‐related CRC.  相似文献   

15.
The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro‐ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga‐Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context.  相似文献   

16.
The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice.  相似文献   

17.
Alterations of both ecology and functions of gut microbiota are conspicuous traits of several inflammatory pathologies, notably metabolic diseases such as obesity and type 2 diabetes. Moreover, the proliferation of enterobacteria, subdominant members of the intestinal microbial ecosystem, has been shown to be favored by Western diet, the strongest inducer of both metabolic diseases and gut microbiota dysbiosis. The inner interdependence between the host and the gut microbiota is based on a plethora of molecular mechanisms by which host and intestinal microbes modify each other. Among these mechanisms are as follows: (i) the well-known metabolic impact of short chain fatty acids, produced by microbial fermentation of complex carbohydrates from plants; (ii) a mutual modulation of miRNAs expression, both on the eukaryotic (host) and prokaryotic (gut microbes) side; (iii) the production by enterobacteria of virulence factors such as the genotoxin colibactin, shown to alter the integrity of host genome and induce a senescence-like phenotype in vitro; (iv) the microbial excretion of outer-membrane vesicles, which, in addition to other functions, may act as a carrier for multiple molecules such as toxins to be delivered to target cells. In this review, I describe the major molecular mechanisms by which gut microbes exert their metabolic impact at a multi-organ level (the gut barrier being in the front line) and support the emerging triad of metabolic diseases, gut microbiota dysbiosis and enterobacteria infections.  相似文献   

18.
Wang Y  Gilbreath TM  Kukutla P  Yan G  Xu J 《PloS one》2011,6(9):e24767
The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.  相似文献   

19.
β-glucans are frequently included in the diet of healthy common carp Cyprinus carpio as a pre-emptive measure for combatting disease. In order to study the effect this has on the relationship between the gut bacteria and host immune response, carp were maintained on either a β-glucan free diet or feed containing 0.1% MacroGard®, a β-1/3, 1/6-glucan, for up to 7 weeks and analysis of innate immune gene expression and molecular analysis of the gut bacteria was performed. The data reveals feeding of MacroGard® to healthy carp does not induce bactericidal innate immune gene expression in the gut but does appear to alter bacterial species richness that did not have a negative effect on overall health. Analysis of innate immune gene expression within the upper midgut revealed that there were significant changes over time in the expression of Interleukin (il)-1β, inducible nitric oxide synthase (inos), mucin (muc2) and C-reactive protein (crp2). Diet did not affect the number of copies of the bacterial 16s rDNA gene in the gut, used as a as a measure of total bacteria population size. However, PCR-denaturing gradient gel electrophoresis (DGGE) analysis revealed a shift in bacterial species richness with MacroGard feeding. Bactericidal immune gene expression of crp2, muc2 and il-1β was weakly correlated with gut bacteria population size indicating a potentially limited role of these genes in interacting with the gut bacteria in healthy carp in order to maintain gut homeostatic conditions. These findings highlight the importance of considering both host immunity and the microbiome together in order to fully elucidate the effeect of immunomodulants, such as β-glucans, upon gut health.  相似文献   

20.
Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号