首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O antigen (O polysaccharide) is an important and highly variable cell component present on the surface of cells which defines the serospecificity of Gram-negative bacteria. Most O antigens of Shigella flexneri, a cause of shigellosis, share a backbone composed of →2)-α-l-RhapIII-(1→2)-α-l-RhapII-(1→3)-α-l-RhapI-(1→3)-β-d-GlcpNAc-(1→ repeats, which can be modified by adding various substituents, giving rise to 19 serotypes. The known modifications include glucosylation on various sugar residues, O-acetylation on RhaI, and phosphorylation with phosphoethanolamine on RhaII or/and RhaIII. Recently, two new O-antigen modifications, namely, O-acetylation at position 3 or 4 of RhaIII and position 6 of GlcNAc, have been identified in several S. flexneri serotypes. In this work, the genetic basis for the 3/4-O-acetylation on RhaIII was elucidated. Bioinformatic analysis of the genome of S. flexneri serotype 2a strain Sf301, which carries 3/4-O-acetylation on RhaIII, revealed an O-acyltransferase gene designated oacB. Genetic studies combined with O-antigen structure analysis demonstrated that this gene is responsible for the 3/4-O-acetylation in serotypes 1a, 1b, 2a, 5a, and Y but not serotype 6, which has a different O-antigen backbone structure. The oacB gene is carried by a transposon-like structure located in the proA-adrA region on the chromosome, which represents a novel mechanism of mobilization of O-antigen modification factors in S. flexneri. These findings enhance our knowledge of S. flexneri O-antigen modifications and shed light on the origin of new O-antigen variants.  相似文献   

2.

Background

Shigella flexneri is the major pathogen causing bacillary dysentery. Fifteen serotypes have been recognized up to now. The genesis of new S. flexneri serotypes is commonly mediated by serotype-converting bacteriophages. Untypeable or novel serotypes from natural infections had been reported worldwide but have not been generated in laboratory.

Results

A new S. flexneri serotype-serotype 1 d was generated when a S. flexneri serotype Y strain (native LPS) was sequentially infected with 2 serotype-converting bacteriophages, SfX first and then SfI. The new serotype 1 d strain agglutinated with both serotype X-specific anti-7;8 grouping serum and serotype 1a-specific anti- I typing serum, and differed from subserotypes 1a, 1b and 1c. Twenty four S. flexneri clinical isolates of serotype X were all converted to serotype 1 d by infection with phage SfI. PCR and sequencing revealed that SfI and SfX were integrated in tandem into the proA-yaiC region of the host chromosome.

Conclusions

These findings suggest a new S. flexneri serotype could be created in nature. Such a conversion may be constrained by susceptibility of a strain to infection by a given serotype-converting bacteriophage. This finding has significant implications in the emergence of new S. flexneri serotypes in nature.  相似文献   

3.
Shigella flexneri O-antigen is an important and highly variable cell component presented on the outer leaflet of the outer membrane. Most Shigella flexneri bacteria share an O-antigen backbone composed of →2)-α-l-RhapIII-(1→2)-α-l-RhapII-(1→3)-α-l-RhapI-(1→3)-β-d-GlcpNAc-(1→ repeats, which can be modified by adding various chemical groups to different sugars, giving rise to diverse O-antigen structures and, correspondingly, to various serotypes. The known modifications include glucosylation on various sugar residues, O-acetylation on RhaI or/and RhaIII, and phosphorylation with phosphoethanolamine on RhaII or/and RhaIII. Recently, a new O-antigen modification, namely, O-acetylation at position 6 of N-acetylglucosamine (GlcNAc), has been identified in S. flexneri serotypes 2a, 3a, Y, and Yv. In this study, the genetic basis of the 6-O-acetylation of GlcNAc in S. flexneri was elucidated. An O-acyltransferase gene designated oacD was found to be responsible for this modification. The oacD gene is carried on serotype-converting bacteriophage SfII, which is integrated into the host chromosome by lysogeny to form a prophage responsible for the evolvement of serotype 2 of S. flexneri. The OacD-mediated 6-O-acetylation also occurs in some other S. flexneri serotypes that carry a cryptic SfII prophage with a dysfunctional gtr locus for type II glucosylation. The 6-O-acetylation on GlcNAc confers to the host a novel O-antigen epitope, provisionally named O-factor 10. These findings enhance our understanding of the mechanisms of the O-antigen variation and enable further studies to understand the contribution of the O-acetylation to the antigenicity and pathogenicity of S. flexneri.  相似文献   

4.
The O-antigen of most Shigella flexneri serotypes contains an identical tetrasaccharide repeating unit. Apart from serotype Y, the O-antigen is modified by addition of a glucosyl and/or O-acetyl residue to a specific position in the O-unit. In this study the glucosyl transferase gene from a serotype 1a has been cloned and identified. The bacteriophage SfV integrase (int) gene was used to probe a S. flexneri Y53 (serotype 1a) cosmid library and 18 unique clones were identified. Southern hybridisation of these clones indicated two unlinked regions of the chromosome contained the int homologue. When expressed in a live candidate vaccine strain of S. flexneri serotype Y (SFL124), clones with one region produced type I antigen, whereas clones containing the other region produced mainly type Y antigen. One of the cosmid clones positive for type I antigen by agglutination and Western blotting was selected for further study. Genes involved in O-antigen glucosyl modification were mapped on a 5.8 kb fragment and subclones were produced which fully or partially expressed the type I antigen, depending on the extent of the clone. Fully and partially expressing clones may be useful vaccine candidate strains for protection against disease caused by two serotypes of S. flexneri.  相似文献   

5.
Shigella flexneri is the major cause of bacterial shigellosis in developing countries. S. flexneri is divided into at least 19 serotypes, the majority of which are modifications of the same basic O-antigen by glucosylation and/or O-acetylation of its sugar residues by phage encoded serotype-converting genes. Recently, a plasmid encoded phosphoethanolamine (PEtN) modification of the O-antigen has been reported, which is responsible for the presence of the MASF IV-1 determinant and results in conversion of traditional serotypes X, 4a and Y to novel serotypes Xv, 4av and Yv, respectively. In this study, we characterized 19 serotype Yv strains isolated in China. A variant of the O-antigen phosphoethanolamine transferase gene opt (formerly called lpt-O) carried by a pSFxv_2-like plasmid was found in serotype Yv strains, which specifies the phosphorylation pattern on the O-antigen of this serotype. For the majority of the O-antigen units, the PEtN modification occurs on RhaIII, while for a minority, modifications occur on both RhaII and RhaIII. Serotype-specific gene detection and PFGE analysis suggested that these serotype Yv isolates were originated from serotypes Y, Xv and 2a by acquisition of an opt-carrying plasmid and/or inactivation of serotype-specific gene gtrII or gtrX. These data, combined with those of serotypes Xv and 4av reported earlier, demonstrate that the plasmid-encoded PEtN modification is an important serotype conversion mechanism in S. flexneri, in addition to glucosylation and O-acetylation.  相似文献   

6.
S. flexneri is the leading cause of bacillary dysentery in the developing countries. Several temperate phages originating from this host have been characterised. However, all S. flexneri phages known to date are lambdoid phages, which have the ability to confer the O-antigen modification of their host. In this study, we report the isolation and characterisation of a novel Mu-like phage from a serotype 4a strain of S. flexneri. The genome of phage SfMu is composed of 37,146 bp and is predicted to contain 55 open reading frames (orfs). Comparative genome analysis of phage SfMu with Mu and other Mu-like phages revealed that SfMu is closely related to phage Mu, sharing >90% identity with majority of its proteins. Moreover, investigation of phage SfMu receptor on the surface of the host cell revealed that the O-antigen of the host serves as the receptor for the adsorption of phage SfMu. This study also demonstrates pervasiveness of SfMu phage in S. flexneri, by identifying complete SfMu prophage strains of serotype X and Y, and remnants of SfMu in strains belonging to 4 other serotypes, thereby indicating that transposable phages in S. flexneri are not uncommon. The findings of this study contribute an advance in our current knowledge of S. flexneri phages and will also play a key role in understanding the evolution of S. flexneri.  相似文献   

7.
Shigella flexneri is the major pathogen causing bacillary dysentery in developing countries. S. flexneri is divided into at least 16 serotypes based on the combination of antigenic determinants present in the O-antigen. All the serotypes (except for serotype 6) share a basic O-unit containing one N-acetyl-d-glucosamine and three l-rhamnose residues, whereas differences between the serotypes are conferred by phage-encoded glucosylation and/or O-acetylation. Serotype Xv is a newly emerged and the most prevalent serotype in China, which can agglutinate with both MASF IV-1 and 7,8 monoclonal antibodies. The factor responsible for the presence of MASF IV-1 (E1037) epitope has not yet been identified. In this study, we analyzed the LPS structure of serotype Xv strains and found that the MASF IV-1 positive phenotype depends on an O-antigen modification with a phosphoethanolamine (PEtN) group attached at position 3 of one of the rhamnose residues. A plasmid carried gene, lpt-O (LPS phosphoethanolamine transferase for O–antigen), mediates the addition of PEtN for serotype Xv and other MASF IV-1 positive strains. These findings reveal a novel serotype conversion mechanism in S. flexneri and show the necessity of further extension of the serotype classification scheme recognizing the MASF IV-1 positive strains as distinctive subtypes.  相似文献   

8.

Background

Shigella, the causative agent of shigellosis, is a major global public health concern, particularly in developing countries with poor sanitation. A comprehensive and current understanding of the prevalent species and serotypes of shigellosis is essential for both disease prevention and vaccine development. However, no current data are available on the causative species/serotypes of shigellosis in mainland China during the past decade.

Methods and Findings

Relevant studies addressing the prevalent species of shigellosis in mainland China from January 2001 to December 2010 were identified from PubMed and the Chinese BioMedical Literature Database (in Chinese) until April 2012. A total of 131 eligible articles (136 studies) were included in this review. Meta-analyses showed that the prevalences of S. flexneri and S. sonnei were 76.2% (95% CI, 73.7%–78.5%) and 21.3% (95% CI, 19.0%–23.7%), respectively. Stratified analyses indicated a decrease in the prevalence of S. flexneri cases and an increase in the prevalence of S. sonnei cases concurrent with the rapid economic growth experienced by China in recent years. Moreover, significantly higher rates of S. sonnei were observed in the East, North and Northeast regions of China, as compared to the rest of the country. These phenomena imply the possible association between the prevalent species of Shigella and regional economic status; however, additional factors also exist and require further investigations. Moreover, the two major serotypes S. flexneri 2a and 4c accounted for 21.5% (95% CI, 16.7%–27.4%) and 12.9% (95% CI 9.8%–16.9%) of S. flexneri infections, respectively, in the past decade. However, these results were found to be frequently heterogeneous (p for Q tests <0.01).

Conclusions

This study provides an updated review of the causative agents of shigellosis in mainland China and focuses on the importance of strengthening prevention and research efforts on S. sonnei and the newly emerged S. flexneri serotype 4c.  相似文献   

9.
《Gene》1997,195(2):207-216
With lysogeny by bacteriophage SfV, Shigella flexneri serotype Y is converted to serotype 5a. The glucosyl transferase gene (gtr) from bacteriophage SfV of S. flexneri, involved in serotype-specific conversion, was cloned and characterized. The DNA sequence of a 3.7 kb EcoRI–BamHI fragment of bacteriophage SfV which includes the gtr gene was determined. This gene, encoding a polypeptide of 417 aa with 47.67 kDa molecular mass, caused partial serotype conversion of S. flexneri from serotype Y to type V antigen as demonstrated by Western blotting and the sensitivity of the hybrid strain to phage Sf6. The deduced protein of the partially sequenced open reading frame upstream of the gtr showed similarity to various glycosyl transferases of other bacteria. Orf3, separated from the gtr by a non-coding region and transcribed convergently, codes for a 167 aa (18.8 kDa) protein found to have homology with tail fibre genes of phage lambda and P2.  相似文献   

10.

Background

Paenibacillus larvae is a Firmicute bacterium that causes American Foulbrood, a lethal disease in honeybees and is a major source of global agricultural losses. Although P. larvae phages were isolated prior to 2013, no full genome sequences of P. larvae bacteriophages were published or analyzed. This report includes an in-depth analysis of the structure, genomes, and relatedness of P. larvae myoviruses Abouo, Davis, Emery, Jimmer1, Jimmer2, and siphovirus phiIBB_Pl23 to each other and to other known phages.

Results

P. larvae phages Abouo, Davies, Emery, Jimmer1, and Jimmer2 are myoviruses with ~50 kbp genomes. The six P. larvae phages form three distinct groups by dotplot analysis. An annotated linear genome map of these six phages displays important identifiable genes and demonstrates the relationship between phages. Sixty phage assembly or structural protein genes and 133 regulatory or other non-structural protein genes were identifiable among the six P. larvae phages. Jimmer1, Jimmer2, and Davies formed stable lysogens resistant to superinfection by genetically similar phages. The correlation between tape measure protein gene length and phage tail length allowed identification of co-isolated phages Emery and Abouo in electron micrographs. A Phamerator database was assembled with the P. larvae phage genomes and 107 genomes of Firmicute-infecting phages, including 71 Bacillus phages. Phamerator identified conserved domains in 1,501 of 6,181 phamilies (only 24.3%) encoded by genes in the database and revealed that P. larvae phage genomes shared at least one phamily with 72 of the 107 other phages. The phamily relationship of large terminase proteins was used to indicate putative DNA packaging strategies. Analyses from CoreGenes, Phamerator, and electron micrograph measurements indicated Jimmer1, Jimmer2, Abouo and Davies were related to phages phiC2, EJ-1, KC5a, and AQ113, which are small-genome myoviruses that infect Streptococcus, Lactobacillus, and Clostridium, respectively.

Conclusions

This paper represents the first comparison of phage genomes in the Paenibacillus genus and the first organization of P. larvae phages based on sequence and structure. This analysis provides an important contribution to the field of bacteriophage genomics by serving as a foundation on which to build an understanding of the natural predators of P. larvae.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-745) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.

Background

In our earlier studies 34 kDa outer membrane protein (OMP) of Shigella flexneri 2a has been identified as an efficient immunostimulant.

Key Results

In the present study MALDI-TOF MS analysis of the purified 34 kDa OMP of Shigella flexneri 2a shows considerable sequence homology (Identity 65%) with the OmpA of S. flexneri 2a. By using the specific primers, the gene of interest has been amplified from S. flexneri 2a (N.Y-962/92) genomic DNA, cloned in pET100/D-TOPO® vector and expressed using induction with isopropyl thiogalactoside (IPTG) for the first time. Immunogenicity and protective efficacy of the recombinant OmpA has been evaluated in an intranasally immunized murine pulmonary model. The recombinant protein induces significantly enhanced protein specific IgG and IgA Abs in both mucosal and systemic compartments and IgA secreting cells in the systemic compartment (spleen). The mice immunized with OmpA have been protected completely from systemic challenge with a lethal dose of virulent S. flexneri 2a. Immunization with the protein causes mild polymorphonuclear neutrophil infiltration in the lung, without inducing the release of large amounts of proinflammatory cytokines.

Conclusion

These results suggest that the OmpA of S. flexneri 2a can be an efficacious mucosal immunogen inducing protective immune responses. Our findings also demonstrate that antibodies and Th1 immune response may be associated with the marked protective efficacy of immunized mice after intranasal shigellae infection.  相似文献   

13.
The O antigen of serotype 1c differs from the unmodified O antigen of serotype Y by the addition of a disaccharide (two glucosyl groups) to the tetrasaccharide repeating unit. It was shown here that addition of the first glucosyl group is mediated by the previously characterized gtrI cluster, which is found within a cryptic prophage at the proA locus in the bacterial chromosome. Transposon mutagenesis was performed to disrupt the gene responsible for addition of the second glucosyl group, causing reversion to serotype 1a. Colony immunoblotting was used to identify the desired revertants, and subsequent sequencing, cloning, and functional expression successfully identified the gene encoding serotype 1c-specific O-antigen modification. This gene (designated gtrIC) was present as part of a three-gene cluster, similar to other S. flexneri glucosyltransferase genes. Relative to the other S. flexneri gtr clusters, the gtrIC cluster is more distantly related and appears to have arrived in S. flexneri from outside the species. Analysis of surrounding sequence suggests that the gtrIC cluster arrived via a novel bacteriophage that was subsequently rendered nonfunctional by a series of insertion events.Shigella flexneri is a pathovar of Escherichia coli that is the main causative agent of endemic bacillary dysentery (shigellosis). It is estimated that S. flexneri is responsible for approximately 100 million shigellosis cases annually, resulting in hundreds of thousands of deaths, predominantly in young children (11). Currently no vaccine is available, although there is evidence to suggest that serotype-specific immunity occurs following infection and that induction of immunity can be replicated with vaccines (9). Shigella serotype diversity arises due to differences in the chemical structure of the O-antigen repeating unit in the lipopolysaccharide, which is the main target of the adaptive host immune response following infection.Because immunity to S. flexneri can be conferred by the induction of antibodies directed against the O antigen, an understanding of the prevalence of different serotypes and the underlying basis of serotype diversity can inform appropriate vaccine design. All S. flexneri serotypes (with the exception of serotype 6) share a common O-antigen backbone, consisting of a repeating tetrasaccharide unit that is comprised of one N-acetylglucosamine residue (GlcNAc) and three rhamnose residues (RhaI, RhaII, and RhaIII) (14). The 12 traditionally recognized S. flexneri serotypes differ by the presence or absence of just six different chemical modifications (glucosylations or O acetylations) of the O antigen. The genes responsible for these O-antigen modifications are introduced into the bacterial genome via bacteriophages (3). Glucosylation of the S. flexneri O antigen is mediated by three genes [gtrA, gtrB, and gtr(type)] that are arranged in a single operon known as a gtr cluster. gtrA and gtrB are highly conserved between different gtr clusters and encode proteins involved in transferring the glucosyl group from the cytoplasm into the periplasm, where O-antigen modification is thought to take place. gtr(type) is unique to each gtr cluster and encodes a glucosyltransferase that is responsible for attaching the glucosyl group to a specific sugar unit of the O antigen via a specific linkage (3).Investigations of S. flexneri have typically focused on serotypes for which commercially available typing sera are available. More recently, it has become clear that other serotypes are also epidemiologically important. In Bangladesh in the late 1980s, two novel S. flexneri strains that did not agglutinate with antibodies specific for the traditionally recognized serotypes were isolated (4). Chemical analysis of the O antigen revealed that these strains belonged to a new serotype, which was named serotype 1c due to the similarity its O antigen shares with the O antigens of serotype 1a and 1b strains (19). Serotype 1c has since been isolated in Egypt, Indonesia, Pakistan, and Vietnam (6, 15, 18). Serotype 1c was shown to be the most prevalent S. flexneri serotype in a northern province of Vietnam, accounting for more than a third of all S. flexneri strains isolated from 1998 to 1999 (15). Identification of serotype 1c currently relies on agglutination testing using monoclonal antibody MASF Ic (19).The O antigen of serotype 1c is distinguished by the presence of a disaccharide (two glucosyl groups) linked to the GlcNAc in the tetrasaccharide repeating unit of the O antigen. The first glucosyl group is joined to GlcNAc via an α1→4 linkage, as occurs in the O antigen of serotype 1a and serotype 1b strains (type I modification). The O antigen of serotype 1c is distinguished by the presence of a second glucosyl group that is linked to the first via an α1→2 linkage (Fig. (Fig.1).1). Type Ia modification is prerequisite to type Ic modification.Open in a separate windowFIG. 1.Chemical structure of the tetrasaccharide repeat units in the O antigens of S. flexneri serotypes 1a and 1c. Note that the O antigen of serotype 1b (not shown) differs from that of serotype 1a by the O acetylation of l-RhaIII.In this study, the genetic basis of O-antigen modification in serotype 1c was elucidated. Serotype 1c strains isolated from different locations and times were compared to gain insight into the evolution of this serotype. This is the first report of the identification of a glucosyltransferase gene that is responsible for addition of the second glucosyl group, causing serotype conversion from serotype 1a to serotype 1c.  相似文献   

14.

Background

The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.

Results

Whole genome nucleotide and proteome comparison of the 93 extant Bacillus phages revealed 12 distinct clusters, 28 subclusters and 14 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member of the group. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,922 protein families (phams) of which only 951 (19%) had a predicted function. In addition, 3,058 (62%) of phams were orphams (phams containing a gene product from a single phage). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.

Conclusions

This analysis provides a basis for understanding and characterizing Bacillus phages and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.  相似文献   

15.

Background

The application of phages is a promising tool to reduce the number of Campylobacter along the food chain. Besides the efficacy against a broad range of strains, phages have to be safe in terms of their genomes. Thus far, no genes with pathogenic potential (e.g., genes encoding virulence factors) have been detected in Campylobacter phages. However, preliminary studies suggested that the genomes of group II phages may be diverse and prone to genomic rearrangements.

Results

We determined and analysed the genomic sequence (182,761 bp) of group II phage CP21 that is closely related to the already characterized group II phages CP220 and CPt10. The genomes of these phages are comprised of four modules separated by very similar repeat regions, some of which harbouring open reading frames (ORFs). Though, the arrangement of the modules and the location of some ORFs on the genomes are different in CP21 and in CP220/CPt10. In this work, a PCR system was established to study the modular genome organization of other group II phages demonstrating that they belong to different subgroups of the CP220-like virus genus, the prototypes of which are CP21 and CP220. The subgroups revealed different restriction patterns and, interestingly enough, also distinct host specificities, tail fiber proteins and tRNA genes. We additionally analysed the genome of group II phage vB_CcoM-IBB_35 (IBB_35) for which to date only five individual contigs could be determined. We show that the contigs represent modules linked by long repeat regions enclosing some yet not identified ORFs (e.g., for a head completion protein). The data suggest that IBB_35 is a member of the CP220 subgroup.

Conclusion

Campylobacter group II phages are diverse regarding their genome organization. Since all hitherto characterized group II phages contain numerous genes for transposases and homing endonucleases as well as similar repeat regions, it cannot be excluded that these phages are genetically unstable. To answer this question, further experiments and sequencing of more group II phages should be performed.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1837-1) contains supplementary material, which is available to authorized users.  相似文献   

16.
H Shin  JH Lee  H Kim  Y Choi  S Heu  S Ryu 《PloS one》2012,7(8):e43392

Background

Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated.

Methodology/Principal Findings

Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain.

Conclusions/Significance

In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella.  相似文献   

17.

Background

The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.

Results

Whole genome nucleotide and proteome comparison of the 83 extant, fully sequenced Bacillus phages revealed 10 distinct clusters, 24 subclusters and 15 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,442 protein families (phams) of which only 894 (20%) had a predicted function. In addition, 2,583 (58%) of phams were orphams (phams containing a single member). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.

Conclusions

This analysis provides a basis for understanding and characterizing Bacillus and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.  相似文献   

18.

Background

Shiga toxin (Stx) are cardinal virulence factors of enterohemorrhagic E. coli O157:H7 (EHEC O157). The gene content and genomic insertion sites of Stx-associated bacteriophages differentiate clinical genotypes of EHEC O157 (CG, typical of clinical isolates) from bovine-biased genotypes (BBG, rarely identified among clinical isolates). This project was designed to identify bacteriophage-mediated differences that may affect the virulence of CG and BBG.

Methods

Stx-associated bacteriophage differences were identified by whole genome optical scans and characterized among >400 EHEC O157 clinical and cattle isolates by PCR.

Results

Optical restriction maps of BBG strains consistently differed from those of CG strains only in the chromosomal insertion sites of Stx2-associated bacteriophages. Multiplex PCRs (stx1, stx2a, and stx2c as well as Stx-associated bacteriophage - chromosomal insertion site junctions) revealed four CG and three BBG that accounted for >90% of isolates. All BBG contained stx2c and Stx2c-associated bacteriophage – sbcB junctions. All CG contained stx2a and Stx2a-associated bacteriophage junctions in wrbA or argW.

Conclusions

Presence or absence of stx2a (or another product encoded by the Stx2a-associated bacteriophage) is a parsimonious explanation for differential virulence of BBG and CG, as reflected in the distributions of these genotypes in humans and in the cattle reservoir.  相似文献   

19.

Background

Spounavirinae viruses have received an increasing interest as tools for the control of harmful bacteria due to their relatively broad host range and strictly virulent phenotype.

Results

In this study, we collected and analyzed the complete genome sequences of 61 published phages, either ICTV-classified or candidate members of the Spounavirinae subfamily of the Myoviridae. A set of comparative analyses identified a distinct, recently proposed Bastille-like phage group within the Spounavirinae. More importantly, type 1 thymidylate synthase (TS1) and dihydrofolate reductase (DHFR) genes were shown to be unique for the members of the proposed Bastille-like phage group, and are suitable as molecular markers. We also show that the members of this group encode beta-lactamase and/or sporulation-related SpoIIIE homologs, possibly questioning their suitability as biocontrol agents.

Conclusions

We confirm the creation of a new genus—the “Bastille-like group”—in Spounavirinae, and propose that the presence of TS1- and DHFR-encoding genes could serve as signatures for the new Bastille-like group. In addition, the presence of metallo-beta-lactamase and/or SpoIIIE homologs in all members of Bastille-like group phages makes questionable their suitability for use in biocontrol.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1757-0) contains supplementary material, which is available to authorized users.  相似文献   

20.
The structure of the repeating unit of the O-antigen polysaccharide from Shigella flexneri provisional serotype 88-893 has been determined. 1H and 13C NMR spectroscopy as well as 2D NMR experiments were employed to elucidate the structure. The carbohydrate part of the hexasaccharide repeating unit is identical to the previously elucidated structure of the O-polysaccharide from S. flexneri prov. serotype Y394. The O-antigen of S. flexneri prov. serotype 88-893 carries 0.7 mol O-acetyl group per repeating unit located at O-2 of the 3-substituted rhamnosyl residue, as identified by H2BC and BS-CT-HMBC NMR experiments. The O-antigen polysaccharide is composed of hexasaccharide repeating units with the following structure: →2)-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-α-l-Rhap2Ac-(1→3)[α-d-Glcp-(1→2)-α-d-Glcp-(1→4)]-β-d-GlcpNAc-(1→. Serological studies showed that type antigens for the two provisional serotypes are identical; in addition 88-893 expresses S. flexneri group factor 6 antigen. We propose that provisional serotypes Y394 and 88-893 be designated as two new serotypes 7a and 7b, respectively, in the S. flexneri typing scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号