首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kim Lorenz  Barak A. Cohen 《Genetics》2012,192(3):1123-1132
Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL.  相似文献   

2.
Yeast sporulation efficiency is a quantitative trait and is known to vary among experimental populations and natural isolates. Some studies have uncovered the genetic basis of this variation and have identified the role of sporulation genes (IME1, RME1) and sporulation-associated genes (FKH2, PMS1, RAS2, RSF1, SWS2), as well as non-sporulation pathway genes (MKT1, TAO3) in maintaining this variation. However, these studies have been done mostly in experimental populations. Sporulation is a response to nutrient deprivation. Unlike laboratory strains, natural isolates have likely undergone multiple selections for quick adaptation to varying nutrient conditions. As a result, sporulation efficiency in natural isolates may have different genetic factors contributing to phenotypic variation. Using Saccharomyces cerevisiae strains in the genetically and environmentally diverse SGRP collection, we have identified genetic loci associated with sporulation efficiency variation in a set of sporulation and sporulation-associated genes. Using two independent methods for association mapping and correcting for population structure biases, our analysis identified two linked clusters containing 4 non-synonymous mutations in genes – HOS4, MCK1, SET3, and SPO74. Five regulatory polymorphisms in five genes such as MLS1 and CDC10 were also identified as putative candidates. Our results provide candidate genes contributing to phenotypic variation in the sporulation efficiency of natural isolates of yeast.  相似文献   

3.
Protein Synthesis in Relation to Sporulation and Meiosis in Yeast   总被引:8,自引:7,他引:8  
The dependence upon protein synthesis of physiological and biochemical events occurring during yeast sporulation was investigated. Protein synthesis was inhibited by cycloheximide. There was an early, irreversible sensitivity to inhibition with respect to cell viability and ascus formation; inhibition was reversible only if the cells were inhibited after, but not prior to, 2 to 3 h in sporulation medium. Interruption of protein synthesis of any time during sporulation inhibited all measurable metabolic and sporulation-specific processes except protein breakdown and, to some extent, ribonucleic acid synthesis. The time interval between the occurrence of an event and the protein synthesis necessary for that event was determined to be 2 to 3 h for ascus formation, 相似文献   

4.
Gibberellic acid (GA) promoted sporulation in yeast when added to the sporulation medium. When added together with GA, metabolic inhibitors of RNA synthesis such as 8-azaguanine, 2-thiouracil, and actinomycin D suppressed selectively the promoting effect of GA on sporulation. The effect of 8-azaguanine and 2-thiouracil was alleviated by simultaneous addition of guanine and uracil, respectively. The promoting effect of GA on sporulation was also suppressed by inhibitors of protein synthesis such as ethionine, chloramphenicol, and puromycin. Methionine eliminated the inhibitory effect of ethionine on the GA action.  相似文献   

5.
The time course of synthesis and breakdown of various macromolecules has been compared for sporulating (a/alpha) and nonsporulating (a/a and alpha/alpha) yeast cells transferred to potassium acetate sporulation medium. Both types of cells incorporate label into ribonucleic acid and protein. The gel electrophoresis patterns of proteins synthesized in sporulation medium are identical for sporulating and nonsporulating diploids; both are different from electropherograms of vegetative cells. Sporulating and nonsporulating strains differ with respect to deoxyribonucleic acid synthesis; no deoxyribonucleic acid is synthesized in the latter case, whereas the deoxyribonucleic acid complement is doubled in the former. Glycogen breakdown occurs only in sporulating strains. Breakdown of preexisting vegetative ribonucleic acid and protein molecules occurs much more extensively in sporulating than in nonsporulating cells. A timetable of these data is presented.  相似文献   

6.
酵母HOG-MAPK途径   总被引:6,自引:0,他引:6  
酿酒酵母Saccharomyces cerevisiae的高渗透性甘油促分裂原活化蛋白激酶(highos-molarity glycerol mitogen-activated protein kinase,HOG-MAPK)途径是高度保守的信号转导途径,很多方面和高等真核生物MAPK途径类似。该途径在高渗应激环境下控制信号转导和基因表达,是细胞生存所必需的。现对酵母HOG-MAPK途径的信号转导以及信号传递的专一性控制、HOG-MAPK途径各组分的亚细胞定位和基因表达调控机制进行综述。  相似文献   

7.
In Saccharomyces cerevisiae, meiosis and spore formation as well as mating are controlled by mating-type genes. Diploids heterozygous for mating type (aα) can sporulate but cannot mate; homozygous aa and αα diploids can mate, but cannot sporulate. From an αα diploid parental strain, we have isolated mutants which have gained the ability to sporulate. Those mutants which continue to mate as αα cells have been designated CSP (control of sporulation). Upon sporulation, CSP mutants yield asci containing 4α spores. The mutant gene which allows αα cells to sporulate is unlinked to the mating-type locus and also acts to permit sporulation in aa diploid cells. Segregation data from crosses between mutant αα and wild-type aa diploids and vice versa indicate (for all but one mutant) that the mutation which allows constitutive sporulation (CSP) is dominant over the wild-type allele. Some of the CSP mutants are temperature-sensitive, sporulating at 32°, but not at 23°. In addition to CSP mutants, our mutagenesis and screening procedure led to the isolation of mutants which sporulate by virtue of a change in the mating-type locus itself, resulting in loss of ability to mate.  相似文献   

8.
A genetic system designed to monitor recombination and sporulation in various repair-deficient yeast strains was constructed. Variously heterozygous at seven or eight sites distributed across the genome, the system facilitated sensitive detection of changes in frequency or pattern of meiotic recombination. Ten rad mutants sensitive primarily to UV-irradiation and without terminal blocks in the sporulation process were studied. Seven were defective in excision repair (rad1, rad2, rad3, rad4, rad10, rad14 and rad16), and three were defective in mutagenic repair (rad5, rad9 and rad18). Individually, each mutant displayed behavior consistent with an orthodox meiosis including a wild-type meiotic recombination profile with respect to gene conversion, PMS and intergenic map distances. Accordingly, we conclude that these mutants are without major effect on meiotic heteroduplex formation or correction. However, certain combinations of excision-defective mutants with rad18 exhibited marked ascosporal inviability. Tetraploids homozygous for rad1 and rad18 produce a large proportion of diploid spores containing a recessive lethal.  相似文献   

9.
Seasonal Variation in Sporulation of Phytophthora infestans   总被引:1,自引:0,他引:1  
Sporulation ability of two isolates of Phytophthora infestans maintained on potato tuber slices of a susceptible cv. ‘Bintje’ and on-rye agar medium was studied for four years (1981–1984). This feature of the fungus was shown to vary in particular seasons during the year. Significantly higher sporulation density per cm2 of aerial mycelium on potato tuber slices was observed in winter and late autumn while significantly lower sporulation was found in spring. Similar tendencies were observed when one of the isolates was cultivated on rye agar medium under controlled conditions. Positive correlation was found between sporulation patterns of isolates of the fungus maintained on rye agar and on tuber slices. Hypothesis has been proposed that these changes are due, to a biorhythm in the fungus.  相似文献   

10.
Effect of auxin and gibberellic acid on sporulation of a yeast, Saccharomyces ellipsoideus, was studied. When added to the sporulation media, gibberellic acid promoted sporulation. The sporulation rate was higher in the medium SGV with vitamins than in the vitamin-free SG, but the effect of gibberellic acid was more pronounced in the latter. Auxin (IAA, 2,4-D, and NAA) inhibited sporulation in SGV, but promoted it in SG. This sporulation-promoting effect of IAA was reversed by an antiauxin, 2,4,6-T. Preculturing in the presence of added IAA increased sporulation. Added to the preculture medium, gibberellic acid alone showed little effect on sporulation, but in combination with IAA it enhanced sporulation conspicuously. IAA and gibberellic acid were effective in sporulation promotion only when added before the nuclear enlargement occurred in sporulation culture.  相似文献   

11.
酵母TOR信号转导途径   总被引:1,自引:0,他引:1  
TOR(target of rapamycin)是真核细胞中一种高度保守的与磷脂酰肌醇激酶相关的蛋白激酶(PIKK),它是免疫抑制剂/抗癌药物雷帕霉素(rapamycin)的靶物质。TOR是细胞生长的中枢控制因子,外界营养因素通过TOR的作用控制酵母、果蝇和哺乳动物细胞的生长。TOR根据细胞环境的营养条件做出相应的应答,参与调控蛋白激酶和蛋白磷酸酯酶的活性,从而控制与蛋白质合成和基因转录相关基因的表达。现对酵母细胞中TOR信号转导途径的研究进行简明的阐述。  相似文献   

12.
Cell differentiation requires different pathways to act in concert to produce a specialized cell type. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth in response to nutrient limitation. Differentiation to the filamentous cell type requires multiple signaling pathways, including a mitogen-activated protein kinase (MAPK) pathway. To identify new regulators of the filamentous growth MAPK pathway, a genetic screen was performed with a collection of 4072 nonessential deletion mutants constructed in the filamentous (Σ1278b) strain background. The screen, in combination with directed gene-deletion analysis, uncovered 97 new regulators of the filamentous growth MAPK pathway comprising 40% of the major regulators of filamentous growth. Functional classification extended known connections to the pathway and identified new connections. One function for the extensive regulatory network was to adjust the activity of the filamentous growth MAPK pathway to the activity of other pathways that regulate the response. In support of this idea, an unregulated filamentous growth MAPK pathway led to an uncoordinated response. Many of the pathways that regulate filamentous growth also regulated each other’s targets, which brings to light an integrated signaling network that regulates the differentiation response. The regulatory network characterized here provides a template for understanding MAPK-dependent differentiation that may extend to other systems, including fungal pathogens and metazoans.  相似文献   

13.
酵母表达系统是目前应用广泛的真核表达系统之一。本文基于对酵母的相关研究近况,分析了酵母体内的分泌途径,推测了可能影响酵母表达系统表达量的原因,并提出了可能解决的方法,为今后的工作打下基础。  相似文献   

14.
Klar AJ 《Genetics》1980,94(3):597-605
Given a nutritional regime marked by a low nitrogen level and the absence of fermentable carbon sources, conventional a/α diploid cells of Saccharomyces cerevisiae exhibit a complex developmental sequence that includes a round of premeiotic DNA replication, commitment to meiosis and the elaboration of mature tetrads containing viable ascospores. Ordinarily, haploid cells and diploid cells of genotype a/a and α/α fail to display these reactions under comparable conditions. Here, we describe a simple technique for sporulation of α/α and a/a cells. Cells of genotype α/α are mated to haploid a cells carrying the kar1 (karyogamy defective) mutation to yield heterokaryons containing the corresponding diploid and haploid nuclei. The kar1 strains mate normally, but nuclei in the resultant zygotes do not fuse. When heterokaryotic cells are inoculated into sporulation media, they produce asci with six spores. Four spores carry genotypes derived from the diploid nucleus and the other two possess the markers originating from the haploid nucleus, i.e., the diploid nucleus divides meiotically while the haploid nucleus apparently divides mitotically. Similarly, the a/a genome is "helped" to sporulate as a consequence of mating with α kar1 strains. The results allow us to conclude that the mating-type functions essential for meiosis and sporulation are communicated and act through the cytoplasm and that sporulation can be dissociated from typical meiosis. This procedure will facilitate the genetic analysis of strains that are otherwise unable to sporulate.  相似文献   

15.
Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm''s simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.  相似文献   

16.
17.
Variation in Composition of Yeast Phosphohexosans   总被引:3,自引:1,他引:2       下载免费PDF全文
Omitting of KH(2)PO(4) from culture media leads to the production of altered phosphohexosans or neutral extracellular mannans by yeasts that otherwise elaborate phosphogalactans and phosphomannans.  相似文献   

18.
Seven haploid strains (four with the MAT mating type and three with the MATa mating type) were selected from the Peterhof genetic collection of yeast. Previous phenotypic analysis assigned six of these strains to a physiological group of strains with changed activity of the Ras/cAMP signal transduction pathway. The haploids were crossed, and the resulting 12 diploids showed higher glycogen accumulation, tolerance to heat shock and nitrogen starvation, and sporulation in complete media. Ten of the diploids expressed the hypersporulation phenotype (higher sporulation efficiency). The phenotypic characters of these ten diploids suggested a reduced activity of the Ras/cAMP pathway. All 12 diploids were tested for sporulation and production of two groups of asci (those with one or two spores and those with three or four spores) as dependent on culture conditions (21, 30, or 34°C; standard sporulation medium or a complete medium containing potassium acetate or glycerol in place of glucose). Sporulation proved to depend on temperature and medium composition. The results are collated with the data on yeast phenotypes associated with a lower activity of the Ras/cAMP signal transduction pathway.  相似文献   

19.
20.
Quantitative studies on yeast 5′-nucIeotidase are presented.

Km values for purine 5′-nucleotides were generally smaller than those for pyrimidine 5′-nucleotides and, among purine series, Km value for 5′-AMP was the smallest, while their V values were almost same.

The enzyme activity was inhibited in the competitive type by bases, nucleosides, 3′- or 2′-nucleotides, and NMN and in the mixed type by NAD and NADP.

Base-, ribose-, 3′- or 5′-phosphate moiety of nucleoside and nucleotide had some effects on binding with enzyme; especially the structure of base moiety characterizes the Km or Ki value.

The enzyme activity was accelerated by Ni++ or Co++, which increases V value but never affects Km value.

The relationship between the structure of substrate and its affinity towards enzyme is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号