首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Ecogeographical rules refer to recurring patterns in nature, including the latitudinal diversity gradient (LDG), Rapoport's rule and Bergmann's rule, amongst others. In the present study, the existence of these rules was examined for diving beetles (Coleoptera: Dytiscidae), a family of aquatic predatory beetles. 2. Assemblage‐level data were analysed for diving beetles, focusing on species richness, local contribution to beta diversity (LCBD), mean range size and mean body size across the biogeographical provinces of Northern Europe. First, each of these variables was correlated with latitude, and then variation in each variable was modelled using actual environmental variables in boosted regression tree analysis. 3. Species richness was found to decrease with latitude, LCBD increased with latitude, mean range size did not show a significant relationship with latitude, and mean body size decreased with latitude. The latter finding was in contrast to Bergmann's rule. The actual environmental variables best predicting variation in these four response variables varied among the models, although they generally included temperature‐related and land use variables as the most influential ones. 4. The results obtained in the present study suggest that diving beetles conformed to the LDG, did not follow Rapoport's rule, and showed a reversed latitudinal gradient in the context of Bergmann's rule. In addition, species‐poor provinces harboured ecologically most unique faunas, suggesting that species richness and LCBD are complementary measures of biodiversity. 5. Even though general support was not found for most of the ecogeographical rules examined, the findings of the present study are interesting because they suggest that aquatic ectothermic invertebrates may show patterns different from those originally described for terrestrial endothermic vertebrates.  相似文献   

2.
Macroecology strives to identify ecological patterns on broad spatial and temporal scales. One such pattern, Rapoport''s rule, describes the tendency of species'' latitudinal ranges to increase with increasing latitude. Several mechanisms have been proposed to explain this rule. Some invoke climate, either through glaciation driving differential extinction of northern species or through increased seasonal variability at higher latitudes causing higher thermal tolerances and subsequently larger ranges. Alternatively, continental tapering or higher interspecific competition at lower latitudes may be responsible. Assessing the incidence of Rapoport''s rule through deep time can help to distinguish between competing explanations. Using fossil occurrence data from the Palaeobiology Database, we test these hypotheses by evaluating mammalian compliance with the rule throughout the Caenozoic of North America. Adherence to Rapoport''s rule primarily coincides with periods of intense cooling and increased seasonality, suggesting that extinctions caused by changing climate may have played an important role in erecting the latitudinal gradients in range sizes seen today.  相似文献   

3.
Weak links: 'Rapoport's rule' and large-scale species richness patterns   总被引:4,自引:0,他引:4  
Many hypotheses have been proposed to explain regional species richness patterns. Among these, ‘Rapoport's rule’ has sparked considerable controversy by stating that the latitudinal gradient in species richness can be explained indirectly as a function of narrower geographic ranges for species at low latitudes. Annual climatic variability, or deviation from mean climatic conditions, has been hypothesized to moderate this phenomenon. Furthermore, taxa that avoid much of this seasonality, such as temperate zone insects that enter diapause or species that migrate, were predicted to show reduced latitudinal gradients in richness. I test the suggested link between ‘Rapoport's rule’ and species richness for two higher level insect taxa as well as for the class Mammalia. Although these taxa exhibit the well-known latitudinal gradient in species richness, simple annual climatic variability and deviation from mean annual climatic conditions provide very poor predictions of species richness in each of them. Potential evapotranspiration, a measurement of ambient climatic energy, explains most of the observed variance in regional species richness patterns for all three taxa, consistent with the species richness-energy hypothesis. I find no support for an indirect link between ‘Rapoport's rule’ and terrestrial species richness patterns in North America.  相似文献   

4.
Aim To assess the relationship between species richness and distribution within regions arranged along a latitudinal gradient we use the North American mammalian fauna as a study case for testing theoretical models. Location North America. Methods We propose a conceptual framework based on a fully stochastic mid‐domain model to explore geographical patterns of range size and species richness that emerge when the size and position of species ranges along a one‐dimensional latitudinal gradient are randomly generated. We also analyse patterns for the mammal fauna of North America by comparing empirical results from a biogeographical data base with predictions based on randomization null models. Results We confirmed the validity of Rapoport's rule for the mammals of North America by documenting gradients in the size of the continental ranges of species. Additionally, we demonstrated gradients of mean regional range size that parallel those of continental range. Our data also demonstrated that mean range size, measured both as a continental or a regional variable, is significantly correlated with the geographical pattern in species richness. All these patterns deviated sharply from null models. Main conclusions Rapoport's statement of an areographic relationship between species distribution and richness is highly relevant in modern discussions about ecological patterns at the geographical scale.  相似文献   

5.
There has been a recent resurgence of interest in documenting and explaining patterns of species' range sizes with the goal of determining if general patterns exist. Much recent debate has centered on whether Rapoport's rule, the tendency for range size to increase with increasing latitude, is a general rule or a local effect. I calculated the sizes of turtle species ranges from distribution maps and used published natural history data to examine how range size varies with latitude, and to determine if differences in range size exist among continents, and if correlations with body size, available land area, habitat and diet breadth exist. The distribution of turtle range sizes extended over six orders of magnitude and formed a lognormal distribution with many species having moderate or small ranges and few species having large ranges. Range size was positively correlated with available land area, habitat breadth, diet breadth, and body size. Multiple regression accounted for only 39% of the variance in range size indicating that other important factors remain unknown. At both global and continental scales, range size is largest near the equator and decreases with increasing latitude, the apposite of Rapoport's rule. However, range size did increase latitudinally above 25-30°N in both the Neararctic and Palearctic suggesting that the pattern would be more accurately considered a local effect than a general rule. Larger range sizes at low latitudes may occur because more land area in the tropics provides much suitable habitat for ectotherms and there are few large scale physical barriers to dispersal. Rapoport patterns result from the occurrence of a small number of wide-ranging cold tolerant species that have reinvaded northern latitudes after Pleistocene glaciation. Patterns of the longitudinal and latitudinal extents of species ranges and their positions illustrate the importance of climate, mountain ranges, deserts, and coastlines, as barriers potentially affecting range size.  相似文献   

6.
The range size distributions of 6643 species in ten different fish and invertebrate taxa dwelling in pelagic (latitudinal range sizes) and benthic (latitudinal and depth range sizes) habitats on both sides of the Atlantic Ocean (80°N−70°S) were studied. The objectives were to analyse: (1) the range size distribution patterns for the various taxa and whether they have right/left skewed or lognormal distributions; (2) the geographical species distributions, to ascertain whether the distribution ranges change with latitude (Rapoport's rule); and (3) the relationship between the depth ranges of benthic species and their maximum depth of occurrence and how depth range size distributions change with latitude. The pelagic taxa exhibited larger range sizes than did the benthic taxa, continental slope/rise species excepted. On the other hand, the boundaries between geographical provinces for both benthic taxa and pelagic taxa tended to occur in association with major oceanographic processes. The shape of the latitudinal range frequency distributions (LRFDs) of the pelagic organisms were distinctly left‐skewed, and the LRFDs for most taxa were significantly different from lognormal. There was no common pattern for the distributions of the benthic organisms, which were lognormal in Cephalopoda, Stomatopoda, and Crustacea Decapoda and tended to be left‐skewed and significantly different from lognormal in Pisces. The applicability of Rapoport's rule was not clearly inferable from the results, and the rule appears to be conditioned by the location of biogeographical boundaries and the endemism rate in the different biogeographical provinces. A clear increase in depth range size with maximum depth range was observable for benthic species, confirming previous studies. Species’ depth range distributions displayed a discernible latitudinal pattern, right‐skewed at high latitudes and left‐skewed at low latitudes. The location of biogeographical boundaries, and endemism rate by biogeographical province were considered to be the factors most useful in explaining species’ distribution patterns and their conformity or nonconformity to Rapoport's rule. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 437–455.  相似文献   

7.
《Journal of Asia》2014,17(2):161-167
Two diversity patterns (hump-shaped and monotonic decrease) frequently occur along altitude or latitude gradients. We examined whether patterns of ant species richness along altitudes in South Korea can be described by these patterns and whether ranges of ant species follow Rapoport's altitudinal rule. Ants on 12 high mountains (> 1100 m) throughout South Korea (from 33° N to 38° N) were surveyed using pitfall traps at intervals of 200–300 m altitude. The temperatures at the sampling sites were determined from digital climate maps. Ant species richness decreased monotonically along the altitudinal gradient and increased along the temperature gradient. However, species richness of cold-adapted species (highland species) showed a hump-shaped pattern along altitude and temperature gradients. The altitude and temperature ranges of ant species followed Rapoport's rule. Sampling site temperature ranges were significantly correlated with coldness. Therefore, Rapoport's rule can be explained by high cold-tolerance of species inhabiting high altitudes or latitudes.  相似文献   

8.
Luo Z  Tang S  Li C  Chen J  Fang H  Jiang Z 《PloS one》2011,6(11):e27975

Background

Explaining species range size pattern is a central issue in biogeography and macroecology. Although several hypotheses have been proposed, the causes and processes underlying range size patterns are still not clearly understood. In this study, we documented the latitudinal mean range size patterns of terrestrial mammals in China, and evaluated whether that pattern conformed to the predictions of the Rapoport''s rule several analytical methods. We also assessed the influence of the mid-domain effect (MDE) and environmental factors on the documented range size gradient.

Methodology/Principal Findings

Distributions of 515 terrestrial mammals and data on nine environmental variables were compiled. We calculated mean range size of the species in each 5° latitudinal band, and created a range size map on a 100 km×100 km quadrat system. We evaluated Rapoport''s rule according to Steven''s, mid-point, Pagel''s and cross-species methods. The effect of the MDE was tested based on a Monte Carlo simulation and linear regression. We used stepwise generalized linear models and correlation analyses to detect the impacts of mean climate condition, climate variability, ambient energy and topography on range size. The results of the Steven''s, Pagel''s and cross-species methods supported Rapoport''s rule, whereas the mid-point method resulted in a hump-shaped pattern. Our range size map showed that larger mean latitudinal extents emerged in the mid-latitudes. We found that the MDE explained 80.2% of the range size variation, whereas, environmental factors accounted for <30% of that variation.

Conclusions/Significance

Latitudinal range size pattern of terrestrial mammals in China supported Rapoport''s rule, though the extent of that support was strongly influenced by methodology. The critical factor underlying the observed gradient was the MDE, and the effects of climate, energy and topography were limited. The mean climate condition hypothesis, climate variability hypothesis, ambient energy hypotheses and topographical heterogeneity hypotheses were not supported.  相似文献   

9.
Support for macroecological rules in insects is mixed, with potential confounding interrelations between patterns rarely studied. We here investigate global patterns in body and wing size, sexual size dimorphism and range size in common fruit flies (Diptera: Drosophilidae) and explore potential interrelations and the predictive power of Allen's, Bergmann's, Rensch's and Rapoport's rules. We found that thorax length (r2 = 0.05) and wing size (r2 = 0.09) increased with latitude, supporting Bergmann's rule. Contrary to patterns often found in endothermic vertebrates, relative wing size increased towards the poles (r2 = 0.12), a pattern against Allen's rule, which we attribute to selection for increased flight capacity in the cold. Sexual size dimorphism decreased with size, evincing Rensch's rule across the family (r2 = 0.14). Yet, this pattern was largely driven by the virilis–repleta radiation. Finally, range size did not correlate with latitude, although a positive relationship was present in a subset of the species investigated, providing no convincing evidence for Rapoport's rule. We further found little support for confounding interrelations between body size, wing loading and range size in this taxon. Nevertheless, we demonstrate that studying several traits simultaneously at minimum permits better interpretation in case of multiple, potentially conflicting trends or hypotheses concerning the macroecology of insects.  相似文献   

10.
Rapoport's rule claims that latitudinal ranges of plant and animal species are generally smaller at low than at high latitudes. However, doubts as to the generality of the rule have been expressed, because studies providing evidence against the rule are more numerous than those in support of it. In groups for which support has been provided, the trend of increasing latitudinal ranges with latitude is restricted to or at least most distinct at high latitudes, suggesting that the effect may be a local phenomenon, for example the result of glaciations. Here we test the rule using two models, a simple one-dimensional one with a fixed number of animals expanding in a northern or southerly direction only, and the evolutionary/ecological Chowdhury model using birth, ageing, death, mutation, speciation, prey–predator relations and food levels. Simulations with both models gave results contradicting Rapoport's rule. In the first, latitudinal ranges were roughly independent of latitude, in the second, latitudinal ranges were greatest at low latitudes, as also shown empirically for some well-studied groups of animals.  相似文献   

11.
This paper assesses the latitudinal extent of terrestrial breeding birds in Nicaragua. In particular, associations among latitudinal midpoint, body mass, and latitudinal extent are examined; significant differences between natural history characteristics (trophic guild, forest dependence, number of forest types) and latitudinal extent are identified; and a test is undertaken of Rapoport's rule for birds at the edge of their northern or southern range in Nicaragua. Birds in Nicaragua were classified into four categories based on latitudinal extent: birds generally restricted to Central America (20%); birds near the edge of their range within Nicaragua (34%); Neotropical birds (42%); and Pan‐American birds (4%). Latitudinal midpoint had a significant negative correlation with latitudinal extent over different taxonomic scales. Natural history characteristics of trophic guild, forest dependence and number of forest types can account for significant differences in species latitudinal extent. Carnivores had greater latitudinal extents than most other trophic guilds, non‐forest birds had greater latitudinal extents than birds that require patchy forest, and birds that occur in four or more forest types had greater latitudinal extents than birds restricted to one or two forest types. Contrary to Rapoport's rule, birds with a northern affinity or latitudinal midpoint north of Nicaragua had significantly smaller latitudinal extents than birds with a southern affinity or latitudinal midpoint south of Nicaragua. A comparison of natural history characteristics of birds with northern and southern affinities found no difference between trophic guild or forest dependence but a significant difference among the number of forest types used by forest birds. Birds with a southern affinity were restricted to fewer forest types than birds with a northern affinity.  相似文献   

12.
Discerning spatial macroecological patterns in freshwater fishes has broad implications for community assembly, ecosystem dynamics, management, and conservation. This study explores the potential interspecific covariation of geographic range (Rapoport's rule) and body size (Bergmann's rule) with latitude in North American sucker fishes (Cypriniformes: Catostomidae). While numerous tests of Rapoport's and Bergmann's rules are documented in the literature, comparatively few of these studies have specifically tested for these patterns, and none have incorporated information reflecting shared ancestry into analyses of North American freshwater fish through a hierarchical model. This study utilized a hierarchical modeling approach with Bayesian inference to evaluate the role that evolution has played in shaping these distributional corollaries. Rapoport's rule was supported at the tribe level but not across family and subfamily groupings. Particularly within the Catostominae subfamily, two tribes reflected strong support for Rapoport's rule while two suggested a pattern was present. Conversely, Bergmann's rule was not supported in Catostomidae. This study provides additional information regarding the pervasiveness of these “rules” by expanding inferences in freshwater fishes and specifically addressing the potential for these macroecological patterns to play a role in the distribution of the understudied group Catostomidae.  相似文献   

13.
14.
Understanding why species range sizes vary is important for predicting the impact of environmental change on biodiversity. Here we use a multi‐variable approach in a phylogenetic comparative context to understand how four morphological, two ecological, and two eco‐geographical variables are associated with range size, latitudinal range and longitudinal range in 81 species of North‐American libellulid dragonflies. Our results show that: 1) migratory species and species with a more expanded basal hindwing lobe have a larger range size; 2) opposite to Rapoport's rule, latitudinal range is negatively correlated with mid‐range latitude; 3) longitudinal range is predicted by wing morphology and migration; 4) body size and larval habitat are not correlated with range size, latitudinal range or longitudinal range. These results suggest that dispersal‐related traits, such as wing shape and migratory status, are important factors in predicting the range size of libellulid dragonflies. In addition, the reverse Rapoport's rule suggests that more northern‐centred species might be more specialized than more southern‐centred species. We suggest that the variables predicting range size are likely imposed by taxon‐specific morphological, ecological, physiological and behavioural traits. Taxon‐specific knowledge is thus necessary to understand the dynamics of range sizes and is important to implement successful restoration and conservation plans of threatened species.  相似文献   

15.
Aim Species geographic ranges are the ‘fundamental units’ of macroecology. Range size is a major correlate of extinction risk in many groups, and is also critical in studies of biotic responses to climate change. Despite this, there is a lack of studies exploring the role of environmental, historical and anthropogenic processes in determining large‐scale patterns in range size. We perform the first global analysis of putative drivers of range size variation in any group, choosing amphibians as our study taxon. Our aims are to disentangle the many hypothesized causes of range size variation and evaluate support for ‘Rapoport's rule’, the observation that range size correlates with latitude. Location Global. Methods We develop a global map of gridded median range size using the International Union for Conservation of Nature (IUCN) distribution maps. From this we perform spatial and non‐spatial regressions to explore relationships between range size and nine hypothesized variables in six biogeographic realms. We use information‐theoretic model selection to compare multiple competing variables, simultaneously evaluating the relative support for each one. Results Current climate – environmental water and energy, and temperature seasonality – is consistently highly ranked in spatial and non‐spatial analyses. Human impacts and other environmental measures (topographic and landscape complexity, effective area, climate extremes) show mixed support, and glacial history is consistently unimportant. Our findings add further evidence to the view that Rapoport's rule is a regional, not global, phenomenon. Main conclusions The primary importance of temperature seasonality may explain why Rapoport's rule is largely restricted to northern latitudes, as this is where seasonality is most pronounced. More generally, the dominance of contemporary climate in our analyses (even when accounting for space) has stark implications for the future status of amphibians. Changes in climate will almost certainly interact with the anthropogenic processes already threatening a third of amphibians globally, with the effects being most keenly felt by species with a restricted range.  相似文献   

16.
Aim Saevissima group fire ants, Solenopsis richteri and S. invicta, have become serious pests when introduced from Argentina and Brazil to other continents. In South America, Solenopsis are distributed across a great variety of habitats and climates. In North America, S. invicta, introduced free of phorids, now ranges from coast to coast in the south. Success in introducing particular Pseudacteon as agents for the biological control of fire ants has varied across climatic zones. We aimed at assembling all the information about fire ant phorids from Argentina and Brazil, to estimate their richness and geographical ranges, to perform a climatic analysis for these distributions, to define groups and climate‐based communities, and to test and elucidate Rapoport's biogeographical rule. Location Argentina and Brazil (South America). Methods From field and museum collections and historical records, we developed a database of fire ant‐specific phorids throughout their known geographical range. A total of 123 sites with values for 15 climatic variables were mapped between 10° and 38° SL and between 35° and 65° C WL for the presence/absence of phorids. We calculated species richness across all sites combined, and for each phytogeographical region, using rarefaction curves, and ICE and Mmean estimators. We calculated mid‐latitudinal points, geographical ranges and areas for each species. The correlation between mid‐latitudinal point and ranges/areas was tested against a null model generated from the randomization of the raw distributional data. We used several types of multivariate analyses to distinguish groups of phorids by phytogeographical regions, hosts and climate, to find gradients of climate throughout the studied area, to define phorid communities in terms of their relationships with gradients of climate, and to test a mechanism for Rapoport's rule. Results Richness estimations using ICE and Mmean estimators were similar or higher than the observed values depending on the phytogeographical region. Cluster multivariate analyses based on climatic, phytogeographic and host data revealed distinct groupings of Pseudacton. The ‘cerrado’ group was confined to tropical savanna areas. A more ‘widespread’ group included ‘Chaco’ and ‘Maritime’ subgroups defined by their respective association with extreme temperatures or precipitation. Ordination multivariate analyses showed (1) two climatic gradients throughout the study area: one of temperature and the other of precipitation, and (2) that climatic variables significantly explained the observed assemblages of phorids. Positive and negative signs of the eigenvalues from the main axes of a canonical correspondence analysis allowed us to define eight communities whose geographical distribution resembled that of phytogeographical regions. We found a significant and positive correlation between geographical areas and mid latitudinal points, and furthermore, the Mantel test based on climatic variables suggested a mechanism for Rapoport's rule applying in the case of Pseudacteon. Main conclusions Pseudacteon species with greater mid‐latitudinal points occupy broader geographical areas and confront more stressful environmental conditions. Because the composition of Pseudacteon communities is largely determined by climatic variables, the correspondence between climates at sites of origin vs. sites of release should be an important consideration in choosing specific phorids for biocontrol efforts.  相似文献   

17.
Examination of latitudinal patterns in species richness, size, and distributional range of East Atlantic fish, based on a compilation of data encompassing the full latitudinal and depth distribution of 1746 East Atlantic fish species, showed that species richness declined towards higher latitudes at a rate of c 1 % of the number of species present, in five-degree bands, for each degree of latitude for both teleosts and elasmobranchs, regardless of habitat However, the latitudinal patterns in maximum fish size and latitudinal range differed between teleosts and elasmobranchs, and changed with habitat No clear evidence was obtained that the latitudinal range occupied increased with latitude, indicating that Rapoport's rule does not apply to E Atlantic fishes Rather, the latitudinal patterns in species richness, size, and distributional range of benthic Atlantic fish were depth-dependent, because species richness, average maximum size, and the average latitudinal range increased with depth and declined with latitude The importance of accounting for this depth-latitude covariation in the distribution of marine fish demonstrated here, together with recent evidence obtained for deep-sea benthic macrofauna, points to depth and latitude as the main factors in the distribution of marine animals  相似文献   

18.
The underlying drivers of β‐diversity along latitudinal gradients have been unclear. Previous studies have focused on β‐diversities calculated at a local scale and shed limited light on regional β‐diversity. We tested the much‐debated effects of range size vs. environmental filtering on the β‐gradient using data from the US Forest Inventory Analysis Program. We showed that the drivers of the β‐gradient were scale dependent. At the local scale species spatial patterns contributed little to the β‐gradient, whereas at the regional scale spatial patterns dominated the gradient and a U‐shape latitudinal relationship for the standardised β‐diversity deviation was revealed. The relationship can be explained by spatial variation in climate and soil texture, thus supporting the environmental filtering hypothesis. But it is inconsistent with Rapoport's rule about the effect of range size on β‐gradient. These results resolve the debate on whether species spatial distributions contribute to β‐gradient and attest the importance of environmental filtering in determining regional β‐diversity.  相似文献   

19.
As one of the most important hypotheses on biogeographical distribution, Rapoport's rule has attracted attention around the world. However, it is unclear whether the applicability of the elevational Rapoport's Rule differs between organisms from different biogeographical regions. We used Stevens’ method, which uses species diversity and the averaged range sizes of all species within each (100 m) elevational band to explore diversity‐elevation, range‐elevation, and diversity‐range relationships. We compared support for the elevational Rapoport's rule between tropical and temperate species of seed plants in Nepal. Neither tropical nor temperate species supported the predictions of the elevational Rapoport's rule along the elevation gradient of 100–6,000 m a.s.l. for any of the studied relationships. However, along the smaller 1,000–5,000 m a.s.l. gradient (4,300 m a.s.l. for range‐elevation relationships) which is thought to be less influenced by boundary effects, we observed consistent support for the rule by tropical species, although temperate species did not show consistent support. The degree of support for the elevational Rapoport's rule may not only be influenced by hard boundary effects, but also by the biogeographical affinities of the focal taxa. With ongoing global warming and increasing variability of temperature in high‐elevation regions, tropical taxa may shift upward into higher elevations and expand their elevational ranges, causing the loss of temperate taxa diversity. Relevant studies on the elevational Rapoport's rule with regard to biogeographical affinities may be a promising avenue to further our understanding of this rule.  相似文献   

20.
Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of mangrove crabs decreases towards the higher latitudes and tested the importance of environmental factors such as Sea Surface Temperature (SST) in creating the latitudinal gradients in species richness of mangrove crabs. A total of 8262 distribution records of 481 species belonging to six families of mangrove crabs including Camptandriidae, Dotillidae, Macrophthalmidae, Ocypodidae, Sesarmidae, and Oziidae were extracted from open-access databases or collected by the authors, quality controlled, cleaned, and analyzed. Species richness was plotted against 5° latitudinal bands in relation to environmental factors. The R software and ArcGIS 10.6.1 were used to analyze the species latitudinal range and richness as well as to map the distribution of mangrove forest, endemic species, species geographical distribution records, and biogeographic regions. The Indo-West Pacific showed the highest species richness of mangrove crabs where more than 65% of species were found in the Indian Ocean and along the western Pacific Ocean. Our results showed that there are 11 significantly different biogeographic regions of mangrove crabs. The highest endemicity rate was observed in the NW Pacific Ocean (29%). Latitudinal patterns of species richness in Macrophthalmidae, Ocypodidae, and Sesarmidae showed an increasing trend from the poles toward the intermediate latitudes including one dip near the equator. However, latitudinal gradients in Camptandriidae, Dotillidae, and Oziidae were unimodal increasing from the higher latitudes towards the equator. Species richness per 5° latitudinal bands significantly increased following mean SST mean (°C), calcite, euphotic depth (m), and mangrove area (km2) across all latitudes, and tide average within each hemisphere. Species richness significantly decreased with dissolved O2 (ml l−1) and nitrate (μmol l−1) over all latitudes and in the southern hemisphere. The climax of global latitudinal species richness for some mangrove was observed along latitudes 20° N and 15°–25° S, not at the equator. This can suggest that temperature is probably the key driver of latitudinal gradients of mangrove crabs’ species richness. Species richness and mangrove area were also highly correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号