首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Toll-like receptors (TLRs) are a group of pattern recognition receptors that play a crucial role in the induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral double-stranded RNA. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling is essential. Limited studies have applied proteomics toward understanding the dynamics of TLR signaling. Herein, a proteomics approach identified 14-3-3ϵ and 14-3-3σ proteins as new members of the TLR signaling complex. Toward the functional characterization of 14-3-3ϵ and 14-3-3σ in TLR signaling, we have shown that both of these proteins impair TLR2, TLR3, TLR4, TLR7/8, and TLR9 ligand-induced IL-6, TNFα, and IFN-β production. We also show that 14-3-3ϵ and 14-3-3σ impair TLR2-, TLR3-, TLR4-, TLR7/8-, and TLR9-mediated NF-κB and IFN-β reporter gene activity. Interestingly, although the 14-3-3 proteins inhibit poly(I:C)-mediated RANTES production, 14-3-3 proteins augment Pam3CSK4, LPS, R848, and CpG-mediated production of RANTES (regulated on activation normal T cell expressed and secreted) in a Mal (MyD88 adaptor-like)/MyD88-dependent manner. 14-3-3ϵ and 14-3-3σ also bind to the TLR adaptors and to both TRAF3 and TRAF6. Our study conclusively shows that 14-3-3ϵ and 14-3-3σ play a major regulatory role in balancing the host inflammatory response to viral and bacterial infections through modulation of the TLR signaling pathway. Thus, manipulation of 14-3-3 proteins may represent novel therapeutic targets for inflammatory conditions and infections.  相似文献   

2.
Toll-like receptor 4 (TLR4) is unique among the TLRs in its use of multiple adaptor proteins leading to activation of both the interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) pathways. Previous work has demonstrated that TLR4 initiates NF-κB activation from the plasma membrane, but that subsequent TLR4 translocation to the endosomes is required for IRF3 activation. Here we have characterized several components of the signaling pathway that governs TLR4 translocation and subsequent IRF3 activation. We find that phospholipase C γ2 (PLCγ2) accounts for LPS-induced inositol 1,4,5-trisphosphate (IP(3)) production and subsequent calcium (Ca(2+)) release. Blockage of PLCγ2 function by inhibitors or knockdown of PLCγ2 expression by siRNAs in RAW 264.7 macrophages lead to reduced IRF3, but enhanced NF-κB activation. In addition, bone marrow-derived macrophages from PLCγ2-deficient mice showed impaired IRF3 phosphorylation and expression of IRF3-regulated genes after LPS stimulation. Using cell fractionation, we show that PLCγ2-IP(3)-Ca(2+) signaling cascade is required for TLR4 endocytosis following LPS stimulation. In conclusion, our results describe a novel role of the PLCγ2-IP(3)-Ca(2+) cascade in the LPS-induced innate immune response pathway where release of intracellular Ca(2+) mediates TLR4 trafficking and subsequent activation of IRF3.  相似文献   

3.
4.
Many proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the “undruggable” oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu12 and Tyr84 play important roles in 14-3-3σ dimerization, the non-core residue Phe25 appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val81) is less important than Phe25 in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu12, Phe25, or Tyr84 dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.  相似文献   

5.
Seven isoforms of 14-3-3 protein family have different functions in the cancer genesis and progress. It is found that six isoforms were up-regulated expression and inclined to sustain the cancer survival. Conversely, 14-3-3σ strongly promotes cancer apoptosis. Its down-regulated expression was found in many cancer tissues and thought to be an early event in the tumor genesis. Interestingly, no suggestions are made about the possible effect that the down-regulated expression of 14-3-3σ activated the other six 14-3-3 isoforms and they take over the role of 14-3-3σ in the tumor genesis. The inactivation of 14-3-3σ in the early stage of tumor genesis is a clue to trigger the other six 14-3-3 isoforms activation.  相似文献   

6.
7.
8.
9.
DNA damage checkpoints are critical for preventing tumorigenesis and regulating the response of cells to genotoxic agents. It is believed that the coordinated actions of a number of effectors underlie proper checkpoint function. The kinase Chk2, p21, and 14-3-3σ have each been shown to be independent effectors of the G2 DNA damage checkpoint. However, the relative roles of these proteins remain unclear. To help elucidate this question, we have perturbed each of these 3 genes in combination in human cells. We show that Chk2 depletion causes markedly increased sensitivity to DNA damage in p21-/-, 14-3-3σ-/- cells but not in cells lacking only one or none of these genes. This greater sensitivity was due to an increase in apoptosis following DNA damage and not due to exacerbation of G2 checkpoint defects. Pharmacologic inhibition of Chk2 in p21-/-, 14-3-3σ-/- cells also resulted in greater sensitivity to DNA damage. Our data indicates that p21 and 14-3-3σ synergize as molecular determinants of sensitivity to DNA damage following Chk2 inhibition, and Chk2 modulates the biological rheostat that determines whether a cancer cell undergoes arrest versus death after treatment with a chemotherapeutic agent. These findings have implications for the targeting of Chk2 in human cancers.  相似文献   

10.
The mammary gland is a dynamic organ that only undergoes complete differentiation during pregnancy. Differentiation is fuelled by asymmetric division of stem cells that reside in normally quiescent niches in the resting gland in response to pregnancy-associated hormones. Loss of regulation of stem cells is believed to underlie some breast cancers. This process is poorly understood in humans since it is difficult to extract stem cells from the lactating gland. We have identified a p63-positive population in breastmilk that proliferates and differentiates into at least two separate mammary lineages in culture. Nuclear translocation of p63 coincides with expression of the cell-cycle arrest protein 14-3-3σ (Sigma) and precedes differentiation. Transient down-regulation of Sigma promotes maintenance of the p63-positive population without affecting normal differentiation. We propose that p63-postive cells from breastmilk represent a novel source of cells to model regulation of mammary gland development and tumorigenesis.  相似文献   

11.
12.

Aims

The asymptomatic nature of early-stage esophageal squamous cell carcinoma (ESCC) results in late presentation and consequent dismal prognosis This study characterized 14-3-3σ protein expression in the multi-stage development of ESCC and determined its correlation with clinical features and prognosis.

Materials and Methods

Western blot was used to examine 14-3-3σ protein expression in normal esophageal epithelium (NEE), low grade intraepithelial neoplasia (LGIN), high grade intraepithelial neoplasia (HGIN), ESCC of TNM I to IV stage and various esophageal epithelial cell lines with different biological behavior. Immunohistochemistry was used to estimate 14-3-3σ protein in 110 biopsy samples of NEE, LGIN or HGIN and in 168 ESCC samples all of whom had follow-up data. Support vector machine (SVM) was used to develop a classifier for prognosis.

Results

14-3-3σ decreased progressively from NEE to LGIN, to HGIN, and to ESCC. Chemoresistant sub-lines of EC9706/PTX and EC9706/CDDP showed high expression of 14-3-3σ protein compared with non-chemoresistant ESCC cell lines and immortalized NEC. Furthermore, the downregulation of 14-3-3σ correlated significantly with histological grade (P = 0.000) and worse prognosis (P = 0.004). Multivariate Cox regression analysis indicated that 14-3-3σ protein (P = 0.016) and T stage (P = 0.000) were independent prognostic factors for ESCC. The SVM ESCC classifier comprising sex, age, T stage, histological grade, lymph node metastasis, clinical stage and 14-3-3σ, distinguished significantly lower- and higher-risk ESCC patients (91.67% vs. 3.62%, P = 0.000).

Conclusions

Downregulation of 14-3-3σ arises early in the development of ESCC and predicts poor survival, suggesting that 14-3-3σ may be a biomarker for early detection of high-risk subjects and diagnosis of ESCC. Our seven-feature SVM classifier for ESCC prognosis may help to inform clinical decisions and tailor individual therapy.  相似文献   

13.
Enteric pathogens represent a major cause of morbidity and mortality worldwide. Toll-like receptor (TLR) and inflammasome signaling are critical for host responses against these pathogens, but how these pathways are integrated remains unclear. Here, we show that TLR4 and the TLR adaptor TRIF are required for inflammasome activation in macrophages infected with the enteric pathogens Escherichia coli and Citrobacter rodentium. In contrast, TLR4 and TRIF were dispensable for Salmonella typhimurium-induced caspase-1 activation. TRIF regulated expression of caspase-11, a caspase-1-related protease that is critical for E. coli- and C. rodentium-induced inflammasome activation, but dispensable for inflammasome activation by S. typhimurium. Thus, TLR4- and TRIF-induced caspase-11 synthesis is critical for noncanonical Nlrp3 inflammasome activation in macrophages infected with enteric pathogens.  相似文献   

14.
15.
β(2)-Glycoprotein I (β(2)GPI) is an abundant plasma protein that binds to the surface of cells and particles expressing negatively charged lipids, but its physiological role remains unknown. Antibodies to β(2)GPI are found in patients with anti-phospholipid syndrome, a systemic autoimmune disease associated with vascular thrombosis and pregnancy morbidity. Although it has been suggested that anti-β(2)GPI antibodies activate endothelial cells and monocytes by signaling through TLR4, it is unclear how anti-β(2)GPI antibodies and/or β(2)GPI interact with TLR4. A number of mammalian proteins (termed "endogenous Toll-like receptor (TLR) ligands") have been reported to bind to TLR4, but, in most cases, subsequent studies have shown that LPS interaction with these proteins is responsible for TLR activation. We hypothesized that, like other endogenous TLR ligands, β(2)GPI interacts specifically with LPS and that this interaction is responsible for apparent TLR4 activation by β(2)GPI. Here, we show that both LPS and TLR4 are required for β(2)GPI to bind to and activate macrophages. Untreated β(2)GPI stimulated TNF-α production in TLR4-sufficient (but not TLR4-deficient) macrophages. In contrast, neither polymyxin B-treated nor delipidated β(2)GPI stimulated TNF-α production. Furthermore, β(2)GPI bound to LPS in a specific and dose-dependent manner. Finally, untreated β(2)GPI bound to the surface of TLR4-sufficient (but not TLR4-deficient) macrophages. Polymyxin B treatment of β(2)GPI abolished macrophage binding. Our findings suggest a potential new biological activity for β(2)GPI as a protein that interacts specifically with LPS and point to the need to evaluate newly discovered endogenous TLR ligands for potential interactions with LPS.  相似文献   

16.
Hepatocellular carcinoma (HCC) is the fifth most common malignancy in the world. It is of important significance to find biomarkers for the prognostic monitoring of HCC. The 14-3-3σ and EZH2 proteins are involved in cell cycle regulation and epigenetic silencing. We herein examined the significance of 14-3-3 σ and EZH2 in HCC (n = 167) by immunohistochemistry, RT-PCR and qRT-PCR. The correlation between 14-3-3σ and EZH2 expression and patients'' clinicopathologic features were examined, as was the correlation between 14-3-3σ and EZH2 expression and the prognosis of HCC patients. We found that 14-3-3σ and EZH2 were highly expressed in HCC (71% and 90%), the expression of EZH2, but not 14-3-3σ, is associated with vascular invasion and tumor differentiation (p<0.01). The coexistence of 14-3-3σ and EZH2 overexpression is associated with a relatively unfavorable prognosis (p<0.01), suggesting that aberrant upregulation of 14-3-3σ and EZH2 expression serves as an inferior prognostic biomarker for HCC.  相似文献   

17.
The Maillard reaction products are known to be effective in chemoprevention. Here, we focused on the anti-cancer effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on in vitro and in vivo colon cancer. We analysed the anti-cancer activity of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on colon cancer cells by using cell cycle and apoptosis analysis. To elucidate it’s mechanism, NF-κB DNA binding activity, docking model as well as pull-down assay. Further, a xenograft model of colon cancer was studied to test the in vivo effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal. (E)-2,4-Bis(p-hydroxyphenyl)-2-butenal inhibited colon cancer cells (SW620 and HCT116) growth followed by induction of apoptosis in a concentration-dependent manner via down-regulation of NF-κB activity. In docking model as well as pull-down assay, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal directly binds to three amino acid residues of IKKβ, thereby inhibited IKKβ activity in addition to induction of death receptor 6 (DR6) as well as their target apoptotic genes. Finally, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal suppressed anchorage-independent cancer cell growth, and tumor growth in xenograft model accompanied with apoptosis through inhibition of IKKβ/NF-κB activity, and overexpression of DR6. These results suggest that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal inhibits colon cancer cell growth through inhibition of IKKβ/NF-κB activity and induction of DR6 expression.  相似文献   

18.
19.
Structure 1 is proposed for the Inagami-Tamura endogenous digitalis-like factor (EDLF), and (14β,17α)-14-hydroxy- and (14β, 17α)-2,14-dihydroxyestradiols (2 and 3) were synthesized as models for studies on 1. The latter compound was remarkably potent in inducing a contractile response in isolated rat aorta and guinea pig left atrium.  相似文献   

20.
《Carbohydrate research》1985,140(2):299-311
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β-d-galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-d-galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α-d-galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号