首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We analysed the glycolipids of mouse thymocytes before and after Concanavalin A (Con A) or recombinant interleukin-2 (rIL-2) stimulation by TLC-immunostaining with carbohydrate-specific antiglycolipid antibodies. The thymocytes were cultured in serum-free medium in the presence of 500 ng ml–1 Con A, 10 U ml–1 rIL-2 or Con A plus rIL-2 for 6, 12, 24, 48, and 72 h, and were found to start proliferating 24 h after cultivation in the presence of Con A or Con A plus rIL-2, the maximum levels being reached at 72 h and 48 h, respectively, in a thymidine uptake experiment. The concentrations of II3Neu-Gg4Cer, Gg4Cer and IV3GalNAc-Gb4Cer after 48 h Con A stimulation were found to be at almost the original levels. Conversely, II3Neu-Gg3Cer, which was not detected in the thymocytes at the start, began to appear after 48 h stimulation with Con A and Con A plus rIL-2, and IV3Neu-Gg5Cer in the cells 48 h after stimulation with Con A and Con A plus rIL-2 has increased to 41 and 44 times higher than in the original cells, respectively, as judged on TLC-immunostaining with monoclonal antibody YHD-06, which detects the GalNAc1-4(NeuAc or NeuGc2-3)Gal-structure. These results indicate that the increased synthesis of both gangliosides, in other words, the activation ofN-acetylgalactosaminyltransferase, is associated with the mitogen-induced proliferation.N-Acetylneuraminic acid was the sole sialic acid in II3Neu-Gg3Cer which newly appeared in the cells on stimulation, whereas the sialic acid of IV3Neu-Gg5Cer was a mixture ofN-acetyl- andN-glycoloylneuraminic acids. This result may suggest that the substrates for the two differentN-acetylgalactosaminyltransferases must be different. This GalNAc1-4(NeuAc or NeuGc2-3)Gal-structure was also detected on the surface of the Con A or Con A plus rIL-2 stimulated mouse thymocytes on flow cytometric analysis of cells indirectly stained with monoclonal antibody YHD-06. Abbreviations: carbohydrate and glycolipid nomenclature and abbreviations follow the IUPAC-IUB recommendations or the nomenclature system of Svennerholm L. (1963)J Neurochem 10:613–23.  相似文献   

4.
Integrins mediate leukocyte adhesion to vascular endothelium and thereby influence leukocyte recirculation. We have explored expression by peripheral blood T cells of β1 and β7 integrins, particularly α4β1 (VLA-4, CD49d), α4β7 (LPAM-1) and α6β1 (VLA-6, CD49f). Integrin expression differs between CD4+ cells and CD8+ cells in that CD4+ cells: 1) are more heterogeneous, particularly for α4; 2) express on the average less α4 and β7; and 3) express on the average more α6 and β1.2D gel electrophoretic analysis was combined with flow cytometric analysis to determine which integrin chain pairs are expressed by the CD45RO – (naive) and CD45RO+ (memory) subsets of CD4+ cells. CD45RO– (naive) cells express homogeneously at intermediate levels the three integrin pairs α6β1, α4β1 and α4β7. Although 2D gel analysis suggests similar average integrin chain composition for CD45RO+CD4+ (memory) cells, flow cytometric analysis demonstrates multiple subsets of CD45RO+ cells differing markedly from each other and from naive cells in levels of expression of α6 and α4 integrins. There are a minimum of three CD45RO+ subsets: 1) α4β1hiα6β1hiα4β7neg which comprises the majority of memory cells; 2) α4β7hiα6β1low presumptive gut-homing memory cells; and 3) α6β1hiα4β7negα4β1neg, a previously unidentified subset expected to have unique migrational-functional properties. Of particular importance in these results are: the expression by CD4+ naive cells of α6β1, α4β1 and α4β7, the overall prominence and regulation of α6β1 on CD4+ cells, and the selective decreases as well as increases in α4β7 and α4β1 during CD4+ memory specialization. Taken together, these results suggest that differential regulation of expression of α4 and α6 integrin chains that accompany naive-to-memory transition in CD4+ cells are instrumental in generating functional subsets of CD4+ memory cells with specialized recirculation abilities.  相似文献   

5.
In contrast to terminally differentiated cardiomyocytes, relatively little is known about the characteristics of mammalian cardiac cells before the initiation of spontaneous contractions (precursor cells). Functional studies on these cells have so far been impossible because murine embryos of the corresponding stage are very small, and cardiac precursor cells cannot be identified because of the lack of cross striation and spontaneous contractions.In the present study, we have used the murine embryonic stem (ES, D3 cell line) cell system for the in vitro differentiation of cardiomyocytes. To identify the cardiac precursor cells, we have generated stably transfected ES cells with a vector containing the gene of the green fluorescent protein (GFP) under control of the cardiac α-actin promoter. First, fluorescent areas in ES cell–derived cell aggregates (embryoid bodies [EBs]) were detected 2 d before the initiation of contractions. Since Ca2+ homeostasis plays a key role in cardiac function, we investigated how Ca2+ channels and Ca2+ release sites were built up in these GFP-labeled cardiac precursor cells and early stage cardiomyocytes. Patch clamp and Ca2+ imaging experiments proved the functional expression of the L-type Ca2+ current (ICa) starting from day 7 of EB development. On day 7, using 10 mM Ca2+ as charge carrier, ICa was expressed at very low densities 4 pA/pF. The biophysical and pharmacological properties of ICa proved similar to terminally differentiated cardiomyocytes. In cardiac precursor cells, ICa was found to be already under control of cAMP-dependent phosphorylation since intracellular infusion of the catalytic subunit of protein kinase A resulted in a 1.7-fold stimulation. The adenylyl cyclase activator forskolin was without effect. IP3-sensitive intracellular Ca2+ stores and Ca2+-ATPases are present during all stages of differentiation in both GFP-positive and GFP-negative cells. Functional ryanodine-sensitive Ca2+ stores, detected by caffeine-induced Ca2+ release, appeared in most GFP-positive cells 1–2 d after ICa. Coexpression of both ICa and ryanodine-sensitive Ca2+ stores at day 10 of development coincided with the beginning of spontaneous contractions in most EBs.Thus, the functional expression of voltage-dependent L-type Ca2+ channel (VDCC) is a hallmark of early cardiomyogenesis, whereas IP3 receptors and sarcoplasmic Ca2+-ATPases are expressed before the initiation of cardiomyogenesis. Interestingly, the functional expression of ryanodine receptors/sensitive stores is delayed as compared with VDCC.  相似文献   

6.
7.
8.
Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals.  相似文献   

9.

Background

Rho kinases (ROCKs) mediate cell contraction, local adhesion, and cell motility, which are considered to be important in cell differentiation. We postulated that ROCKs are involved in controlling embryonic stem (ES) cell renewal and differentiation.

Methodology/Principal Findings

CCE, a murine ES cell, was treated with Y-27632 for 48 to 96 hours and colony formation was evaluated. Y-27632 blocked CCE colony formation and induced CCE to grow as individual cells, regardless of the initial seeding cell density either at 104/cm2 (“high” seeding density) or 2×103/cm2 (“low” density). However, at high seeding density, Y-27632–treated cells exhibited reduction of alkaline phosphatase (AP) staining and Oct3/4 expression. They expressed SOX-1, nestin, and MAP2c, but not βIII-tubulin or NG-2. They did not express endoderm or mesoderm lineage markers. After removal of Y-27632, the cells failed to form colonies or regain undifferentiated state. Silencing of ROCK-1 or ROCK-2 with selective small interference RNA induced CCE morphological changes similar to Y-27632. Silencing of ROCK-1 or ROCK-2 individually was sufficient to cause reduction of AP and Oct3/4, and expression of SOX-1, nestin, and MAP2c; and combined silencing of both ROCKs did not augment the effects exerted by individual ROCK siRNA. Y-27632–treated CCE cells seeded at 2×103 or 6.6×103 cells/cm2 did not lose renewal factors or express differentiation markers. Furthermore, they were able to form AP-positive colonies after removal of Y-27632 and reseeding. Similar to ROCK inhibition by Y-27632, silencing of ROCK-1 or ROCK-2 in cells seeded at 2×103/cm2 did not change renewal factors.

Conclusions/Significance

We conclude that ROCKs promote ES cell colony formation, maintain them at undifferentiated state, and prevent them from neural differentiation at high seeding density. ROCK inhibition represents a new strategy for preparing large numbers of neural progenitor cells.  相似文献   

10.
We have studied the amino-acid residues involved in the catalytic activity of two distinct brain sialyltransferases acting on fetuin and asialofetuin. These two enzymes were strongly inhibited byN-bromosuccinimide, a specific blocking reagent for tryptophan residues. This result suggests the involvement of such residues in the catalytic process of the two sialytransferases. Furthermore, chemical modifications by various sulfhydryl reagents led to a strong inhibition of the fetuin sialyltransferase while the asialofetuin sialyltransferase was only slightly inhibited. For a more thorough understanding of the thiol inactivation mechanism of the fetuin sialyltransferase, we studied in more detail the reactivity of this enzyme with NEM (N-ethylmaleimide), an irreversible reagent. The time-dependent inactivation followed first-order kinetics and these kinetic data afforded presumptive evidence for the binding of 1 mol NEM per mol of enzyme. Only CMP-NeuAc protected the enzyme against NEM inactivation effectively. MnCl2 did not enhance the protective effect of CMP-NeuAc. The modifications of the fetuin sialyltransferase kinetic parameters by NEM showed a competitive mechanism between NEM and CMP-NeuAc. The results suggest the involvement of a sulfhydryl residue in or near the nucleotide-sugar binding may induce a change in conformation of the protein, leading to a decreased accessibility of this thiol group located near the nucleotide-sugar binding site). This SH group, is essential to the enzyme activity, which is not the case for the asialofetuin sialyltransferase.Abbreviations p-CMB p-chloromercuribenzoic acid - CPDS 6,6-dithiodinicotinic acid carboxypyridine disulfide - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - NEM N-ethylmaleimide - DTT dithiothreitol - Mes 2-(N-morpholino)ethane sulfonic acid - NeuAc N-acetylneuraminic acid  相似文献   

11.
Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine, ductal, and acinar cells but become bipotent by embryonic day 13.5, giving rise to endocrine cells and ductal cells. However, the dynamics of individual progenitors balancing self-renewal and lineage-specific differentiation has never been described. Using three-dimensional live imaging and in vivo clonal analysis, we reveal the contribution of individual cells to the global behaviour and demonstrate three modes of progenitor divisions: symmetric renewing, symmetric endocrinogenic, and asymmetric generating a progenitor and an endocrine progenitor. Quantitative analysis shows that the endocrine differentiation process is consistent with a simple model of cell cycle–dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of β-cells in vitro.  相似文献   

12.
13.
14.
The tetrasaccharides GalNAcß1-4[NeuAc2-3]Galß1-4Glc and GalNAcß1-4[NeuAc2-3]Galß1-4GlcNAc were synthesised by enzymic transfer of GalNAc from UDP-GalNAc to 3-sialyllactose (NeuAc2-3Galß1-4Glc) and 3-sialyl-N-acetyllactosamine (NeuAc2-3Galß1-4GlcNAc). The structures of the products were established by methylation and1H-500 MHz NMR spectroscopy. In Sda serological tests the product formed with 3-sialyl-N-acetyllactosamine was highly active whereas that formed with 3-sialyllactose had only weak activity.  相似文献   

15.
16.
17.
Connective tissue of the freshwater pulmonateLymnaea stagnalis was shown to contain fucosyltransferase activity capable of transferring fucose from GDP-Fuc in 1–2 linkage to terminal Gal of type 3 (Gal1–3GalNAc) acceptors, and in 1–3 linkage to GlcNAc of type 2 (Gal1–4GlcNAc) acceptors. The 1–2 fucosyltransferase was active with Gal1–3GalNAc1-OCH2CH=CH2 (K m=12 mM,V max=1.3 mU ml–1) and Gal1–3GalNAc (K m=20 mM,V max=2.1 mU ml–1), whereas the 1–3 fucosyltransferase was active with Gal1–4GlcNAc (K m=23 mM,V max=1.1 mU ml–1). The products formed from Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4GlcNAc were purified by high performance liquid chromatography, and identified by 500 MHz1H-NMR spectroscopy and methylation analysis to be Fuc1–2Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4(Fuc1–3)GlcNAc, respectively. Competition experiments suggest that the two fucosyltransferase activities are due to two distinct enzymes.Abbreviations 2Fuc-T 1–2 fucosyltransferase - 3Fuc-T 1–3 fucosyltransferase - MeO-3Man 3-O-methyl-D-mannose - MeO-3Gal 3-O-methyl-D-galactose  相似文献   

18.
19.
Vaccination with autologous cancer cells expressing a potent foreign antigen is promising for immunotherapy of tumors. A construct was obtained to transfect cancer cells with the hemagglutinin–neuraminidase (HN) gene of the Newcastle disease virus (NDV). Specific primers were designed, and the HN cDNA was amplified from RNA isolated from the allantoic fluid of NDV-infected embryonated chicken eggs. The amplified fragment was cloned in pCR2.1, sequenced, and recloned in expression vector pCDNA3.1/Zeo(+). The resulting construct was used to transfect mouse myeloma cells SP2/0. Production of HN was checked by ELISA and by a neuraminidase activity assay. Cell agglutination on ice was proposed as a test for surface HN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号