首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selectivity and sensitivity in the detection of single nucleotide polymorphisms (SNPs) are among most important attributes to determine the performance of DNA microarrays. We previously reported the generation of a novel mesospaced surface prepared by applying dendron molecules on the solid surface. DNA microarrays that were fabricated on the dendron-modified surface exhibited outstanding performance for the detection of single nucleotide variation in the synthetic oligonucleotide DNA. DNA microarrays on the dendron-modified surface were subjected to the detection of single nucleotide variations in the exons 5–8 of the p53 gene in genomic DNAs from cancer cell lines. DNA microarrays on the dendron-modified surface clearly discriminated single nucleotide variations in hotspot codons with high selectivity and sensitivity. The ratio between the fluorescence intensity of perfectly matched duplexes and that of single nucleotide mismatched duplexes was >5–100 without sacrificing signal intensity. Our results showed that the outstanding performance of DNA microarrays fabricated on the dendron-modified surface is strongly related to novel properties of the dendron molecule, which has the conical structure allowing mesospacing between the capture probes. Our microarrays on the dendron-modified surface can reduce the steric hindrance not only between the solid surface and target DNA, but also among immobilized capture probes enabling the hybridization process on the surface to be very effective. Our DNA microarrays on the dendron-modified surface could be applied to various analyses that require accurate detection of SNPs.  相似文献   

2.
Viral integrase (IN) and Vpr are both components of the human immunodeficiency virus type 1 (HIV-1) pre-integration complex. To investigate whether these proteins interact within this complex, we investigated the effects of Vpr and its subdomains on IN activity in vitro. When a 21mer oligonucleotide was used as a donor and acceptor, both Vpr and its C-terminal DNA-binding domain [(52–96)Vpr] inhibited the integration reaction, whereas the (1–51)Vpr domain did not affect IN activity. Steady-state fluorescence anisotropy showed that both full-length and (52–96)Vpr bind to the short oligonucleotide, thereby extending previous observations with long DNA. The concentrations of the two proteins required to inhibit IN activity were consistent with their affinities for the oligonucleotide. The use of a 492 bp mini-viral substrate confirmed that Vpr can inhibit the IN-mediated reaction. However, the activity of (52–96)Vpr differed notably since it stimulated specifically integration events involving two homologous mini-viral DNAs. Order of addition experiments indicated that the stimulation was maximal when IN, (50–96)Vpr and the mini-viral DNA were allowed to form a complex. Furthermore, in the presence of (50–96)Vpr, the binding of IN to the mini-viral DNA was dramatically enhanced. Taken together, these data suggest that (52–96)Vpr stimulates the formation of a specific complex between IN and the mini-viral DNA.  相似文献   

3.
In this study we report for the first time, the molecular analysis of HLA-DR and -DQ gene frequencies in a large cohort of well charaterized type 1 (insulin-dependent) diabetes mellitus (IDDM) patients (n=72), and ethnically matched controls (n=59) collected in subSaharan Africa. High molecular mass DNA was prepared and analyzed in Southern blots with DRBI, DQA1, and DQB1 probes. By identifying DR and DQ allele-specific restriction fragment length polymorphisms (RFLPs), we have shown a strong positive association between IDDM and the Asp 57 DQB1 allele *0201 (DQw2). A rare DR4, DQw2 haplotype was also identified at high frequency in the IDDM cohort. We can now confirm that the association between Asp 57DQB1 alleles and IDDM, previously reported in ethnically diverse cohorts collected in Western Europe, North America, and South Asia, is also present in an IDDM cohort collected in Africa.  相似文献   

4.
Fluorescence resonance energy transfer (FRET) experiments have been performed to elucidate the structural features of oligonucleotide duplexes containing the pyrimidine(6–4)pyrimidone photoproduct, which is one of the major DNA lesions formed at dipyrimidine sites by UV light. Synthetic 32mer duplexes with and without the (6–4) photoproduct were prepared and fluorescein and tetramethylrhodamine were attached, as a donor and an acceptor, respectively, to the aminohexyl linker at the C5 position of thymine in each strand. Steady-state and time-resolved analyses revealed that both the FRET efficiency and the fluorescence lifetime of the duplex containing the (6–4) photoproduct were almost identical to those of the undamaged duplex, while marked differences were observed for a cisplatin-modified duplex, as a model of kinked DNA. Lifetime measurements of a series of duplexes containing the (6–4) photoproduct, in which the fluorescein position was changed systematically, revealed a small unwinding at the damage site, but did not suggest a kinked structure. These results indicate that formation of the (6–4) photoproduct induces only a small change in the DNA structure, in contrast to the large kink at the (6–4) photoproduct site reported in an NMR study.  相似文献   

5.
Rapid (<2 min) and quantitative genotyping for single nucleotide polymorphisms (SNPs) associated with spinal muscular atrophy was done using a reusable (approximately 80 cycles of application) fibre-optic biosensor over a clinically relevant range (0–4 gene copies). Sensors were functionalized with oligonucleotide probes immobilized at high density (~7 pmol/cm2) to impart enhanced selectivity for SNP discrimination and used in a total internal reflection fluorescence detection motif to detect 202 bp PCR amplicons from patient samples. Real-time detection may be done over a range of ionic strength conditions (0.1–1.0 M) without stringency rinsing to remove non-selectively bound materials and without loss of selectivity, permitting a means for facile sample preparation. By using the time-derivative of fluorescence intensity as the analytical parameter, linearity of response may be maintained while allowing for significant reductions in analysis time (10–100-fold), permitting for the completion of measurements in under 1 min.  相似文献   

6.
This work concerns the identification of the alleles of the polymorphic DQB1 gene of the human leukocyte antigen system, conferring susceptibility to the development of insulin-dependent diabetes mellitus (IDDM) in non-PCR amplified DNA samples and, more importantly, in crude cell extracts. Our method is based on the time-resolved analysis of a Förster energy-transfer mechanism that occurs in a dual-labelled fluorescent probe specific for the IDDM-associated DQB1-0201 allele. Such an oligonucleotide probe is labelled, at the two ends, by a pair of chromophores that operate as donor and acceptor in a Förster resonant energy transfer. The donor fluorescence is quenched with an efficiency that is strongly dependent on the donor-to-acceptor distance, hence on the configuration of the probe after hybridization with the various DQB1 alleles. By time-correlated single-photon counting, performed with an excitation/detection system endowed with 30-ps resolution, we measure the time-resolved fluorescence decay of the donor and discriminate, by means of the decay–time value, the DNA bearing the ‘susceptible’ allele from the DNAs bearing any other sequence in the same region of the DQB1 gene. We could also distinguish the presence of the DQB1-0201 allele in a homozygous versus a heterozygous condition.  相似文献   

7.
Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA–hRPA complexes. Human Rad52 bound ssDNA or ssDNA–hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA–hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52–ssDNA complexes. In contrast to the wild type protein, hRad52RQK/AAA and hRad521–212 mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.  相似文献   

8.
We present a simple and novel assay—employing a universal molecular beacon (MB) in the presence of Hg2+—for the detection of single nucleotide polymorphisms (SNPs) based on Hg2+–DNA complexes inducing a conformational change in the MB. The MB (T7-MB) contains a 19-mer loop and a stem of a pair of seven thymidine (T) bases, a carboxyfluorescein (FAM) unit at the 5′-end, and a 4-([4-(dimethylamino)phenyl]azo)benzoic acid (DABCYL) unit at the 3′-end. Upon formation of Hg2+–T7-MB complexes through T–Hg2+–T bonding, the conformation of T7-MB changes from a random coil to a folded structure, leading to a decreased distance between the FAM and DABCYL units and, hence, increased efficiency of fluorescence resonance energy transfer (FRET) between the FAM and DABCYL units, resulting in decreased fluorescence intensity of the MB. In the presence of complementary DNA, double-stranded DNA complexes form (instead of the Hg2+–T7-MB complexes), with FRET between the FAM and DABCYL units occurring to a lesser extent than in the folded structure. Under the optimal conditions (20 nM T7-MB, 20 mM NaCl, 1.0 μM Hg2+, 5.0 mM phosphate buffer solution, pH 7.4), the linear plot of the fluorescence intensity against the concentration of perfectly matched DNA was linear over the range 2–30 nM (R2 = 0.991), with a limit of detection of 0.5 nM at a signal-to-noise ratio of 3. This new probe provides higher selectivity toward DNA than that exhibited by conventional MBs.  相似文献   

9.
Lymphocyte function–associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1–specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation.  相似文献   

10.
The article describes a new technology for real-time polymerase chain reaction (PCR) detection of nucleic acids. Similar to Taqman, this new method, named Snake, utilizes the 5′-nuclease activity of Thermus aquaticus (Taq) DNA polymerase that cleaves dual-labeled Förster resonance energy transfer (FRET) probes and generates a fluorescent signal during PCR. However, the mechanism of the probe cleavage in Snake is different. In this assay, PCR amplicons fold into stem–loop secondary structures. Hybridization of FRET probes to one of these structures leads to the formation of optimal substrates for the 5′-nuclease activity of Taq. The stem–loop structures in the Snake amplicons are introduced by the unique design of one of the PCR primers, which carries a special 5′-flap sequence. It was found that at a certain length of these 5′-flap sequences the folded Snake amplicons have very little, if any, effect on PCR yield but benefit many aspects of the detection process, particularly the signal productivity. Unlike Taqman, the Snake system favors the use of short FRET probes with improved fluorescence background. The head-to-head comparison study of Snake and Taqman revealed that these two technologies have more differences than similarities with respect to their responses to changes in PCR protocol, e.g. the variations in primer concentration, annealing time, PCR asymmetry. The optimal PCR protocol for Snake has been identified. The technology’s real-time performance was compared to a number of conventional assays including Taqman, 3′-MGB-Taqman, Molecular Beacon and Scorpion primers. The test trial showed that Snake supersedes the conventional assays in the signal productivity and detection of sequence variations as small as single nucleotide polymorphisms. Due to the assay’s cost-effectiveness and simplicity of design, the technology is anticipated to quickly replace all known conventional methods currently used for real-time nucleic acid detection.  相似文献   

11.
Molecular beacons are stem–loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2′-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2′-O-methyl and 2′-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2′-O-methyl/RNA > 2′-deoxy/RNA > 2′-deoxy/DNA > 2′-O-methyl/DNA. The improved stability of the 2′-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2′-deoxy molecular beacons and RNA targets. However, the 2′-O-methyl molecular beacons hybridized to RNA more quickly than 2′-deoxy molecular beacons. For the pairs tested, the 2′-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

12.
In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer splitting. Variation in nucleosome structures allows it to perform a variety of cellular functions. Here, we identified a novel spontaneous conformational switching of nucleosomes under physiological conditions using single-molecule FRET. Using FRET probes placed at various positions on the nucleosomal DNA to monitor conformation of the nucleosome over a long period of time (30–60 min) at various ionic conditions, we identified conformational changes we refer to as nucleosome gaping. Gaping transitions are distinct from nucleosome breathing, sliding or tightening. Gaping modes switch along the direction normal to the DNA plane through about 5–10 angstroms and at minutes (1–10 min) time scale. This conformational transition, which has not been observed previously, may be potentially important for enzymatic reactions/transactions on nucleosomal substrate and the formation of multiple compression forms of chromatin fibers.  相似文献   

13.
A DNA piezoelectric biosensing method for real-time detection of Escherichia coli O157:H7 in a circulating-flow system was developed in this study. Specific probes [a 30-mer oligonucleotide with or without additional 12 deoxythymidine 5′-monophosphate (12-dT)] for the detection of E. coli O157:H7 gene eaeA, synthetic oligonucleotide targets (30 and 104 mer) and PCR-amplified DNA fragments from the E. coli O157:H7 eaeA gene (104 bp), were used to evaluate the efficiency of the probe immobilization and hybridization with target DNA in the circulating-flow quartz crystal microbalance (QCM) device. It was found that thiol modification on the 5′-end of the probes was essential for probe immobilization on the gold surface of the QCM device. The addition of 12-dT to the probes as a spacer, significantly enhanced (P < 0.05) the hybridization efficiency (H%). The results indicate that the spacer enhanced the H% by 1.4- and 2-fold when the probes were hybridized with 30- and 104-mer targets, respectively. The spacer reduced steric interference of the support on the hybridization behavior of immobilized oligonucleotides, especially when the probes hybridized with relatively long oligonucleotide targets. The QCM system was also applied in the detection of PCR-amplified DNA from real samples of E. coli O157:H7. The resultant H% of the PCR-amplified double-strand DNA was comparable to that of the synthetic target T-104AS, a single-strand DNA. The piezoelectric biosensing system has potential for further applications. This approach lays the groundwork for incorporating the method into an integrated system for rapid PCR-based DNA analysis.  相似文献   

14.
Locked nucleic acids (LNAs) and double-stranded small interfering RNAs (siRNAs) are rather new promising antisense molecules for cell culture and in vivo applications. Here, we compare LNA–DNA–LNA gapmer oligonucleotides and siRNAs with a phosphorothioate and a chimeric 2′-O-methyl RNA–DNA gapmer with respect to their capacities to knock down the expression of the vanilloid receptor subtype 1 (VR1). LNA–DNA–LNA gapmers with four or five LNAs on either side and a central stretch of 10 or 8 DNA monomers in the center were found to be active gapmers that inhibit gene expression. A comparative co-transfection study showed that siRNA is the most potent inhibitor of VR1–green fluorescent protein (GFP) expression. A specific inhibition was observed with an estimated IC50 of 0.06 nM. An LNA gapmer was found to be the most efficient single-stranded antisense oligonucleotide, with an IC50 of 0.4 nM being 175-fold lower than that of commonly used phosphorothioates (IC50 ~70 nM). In contrast, the efficiency of a 2′-O-methyl-modified oligonucleotide (IC50 ~220 nM) was 3-fold lower compared with the phosphorothioate. The high potency of siRNAs and chimeric LNA–DNA oligonucleotides make them valuable candidates for cell culture and in vivo applications targeting the VR1 mRNA.  相似文献   

15.
Chromosome-specific painting is a powerful technique in molecular cytogenetic and genome research. We developed an oligonucleotide (oligo)-based chromosome painting technique in cucumber (Cucumis sativus) that will be applicable in any plant species with a sequenced genome. Oligos specific to a single chromosome of cucumber were identified using a newly developed bioinformatic pipeline and then massively synthesized de novo in parallel. The synthesized oligos were amplified and labeled with biotin or digoxigenin for use in fluorescence in situ hybridization (FISH). We developed three different probes with each containing 23,000–27,000 oligos. These probes spanned 8.3–17 Mb of DNA on targeted cucumber chromosomes and had the densities of 1.5–3.2 oligos per kilobases. These probes produced FISH signals on a single cucumber chromosome and were used to paint homeologous chromosomes in other Cucumis species diverged from cucumber for up to 12 million years. The bulked oligo probes allowed us to track a single chromosome in early stages during meiosis. We were able to precisely map the pairing between cucumber chromosome 7 and chromosome 1 of Cucumis hystrix in a F1 hybrid. These two homeologous chromosomes paired in 71% of prophase I cells but only 25% of metaphase I cells, which may provide an explanation of the higher recombination rates compared to the chiasma frequencies between homeologous chromosomes reported in plant hybrids.  相似文献   

16.
We sought to develop a novel competitive fluorescence resonance energy transfer (FRET)-aptamer-based strategy for detection of foot-and-mouth (FMD) disease within minutes. A 14-amino-acid peptide from the VP1 structural protein, which is conserved among 16 strains of O-serotype FMD virus, was synthesized and labeled with Black Hole Quencher-2 (BHQ-2) dye. Polyclonal FMD DNA aptamers were labeled with Alexa Fluor 546-14-dUTP by polymerase chain reaction and allowed to bind the BHQ-2-peptide conjugate. Following purification of the FRET–aptamer–peptide complex, a “lights off” response was observed within 10 minutes and was sensitive to a level of 25–250 ng/mL of FMD peptide. Ten candidate aptamers were sequenced from the polyclonal family. The aptamer candidates were screened in an enzyme-based plate assay. A high- and low-affinity aptamer candidate were each labeled with Alexa Fluor 546-14-dUTP by asymmetric polymerase chain reaction and used in the competitive FRET assay, but neither matched the sensitivity of the polyclonal FRET response, indicating the need for further screening of the aptamer library.  相似文献   

17.
We describe a quantitative method for detecting RNA alternative splicing variants that combines in situ hybridization of fluorescently labeled peptide nucleic acid (PNA) probes with confocal microscopy Förster resonance energy transfer (FRET). The use of PNA probes complementary to sequences flanking a given splice junction allows to specifically quantify, within the cell, the RNA isoform generating such splice junction by FRET measure. As a proof of concept we analyzed two alternative splicing events originating from lymphocyte antigen 6 (LY6) complex, locus G5B (LY6G5B) pre-mRNA. These are characterized by the removal of the first intron (Fully Spliced Isoform, FSI) or by retention of such intron (Intron-Retained Isoform, IRI). The use of PNA probe pairs labeled with donor (Cy3) and acceptor (Cy5) fluorophores, suitable to FRET, flanking FSI and IRI specific splice junctions specifically detected both mRNA isoforms in HeLa cells. We have observed that the method works efficiently with probes 5–11 nt apart. The data supports that this FRET-based PNA fluorescence in situ hybridization (FP–FISH) method offers a conceptually new approach for characterizing at the subcellular level not only splice variant isoform structure, location and dynamics but also potentially a wide variety of close range RNA–RNA interactions.  相似文献   

18.
Fluorescence resonance energy transfer (FRET), measured by fluorescence intensity-based microscopy and fluorescence lifetime imaging, has been used to estimate the size of oligomers formed by the M2 muscarinic cholinergic receptor. The approach is based on the relationship between the apparent FRET efficiency within an oligomer of specified size (n) and the pairwise FRET efficiency between a single donor and a single acceptor (E). The M2 receptor was fused at the N terminus to enhanced green or yellow fluorescent protein and expressed in Chinese hamster ovary cells. Emission spectra were analyzed by spectral deconvolution, and apparent efficiencies were estimated by donor-dequenching and acceptor-sensitized emission at different ratios of enhanced yellow fluorescent protein-M2 receptor to enhanced green fluorescent protein-M2 receptor. The data were interpreted in terms of a model that considers all combinations of donor and acceptor within a specified oligomer to obtain fitted values of E as follows: n = 2, 0.495 ± 0.019; n = 4, 0.202 ± 0.010; n = 6, 0.128 ± 0.006; n = 8, 0.093 ± 0.005. The pairwise FRET efficiency determined independently by fluorescence lifetime imaging was 0.20–0.24, identifying the M2 receptor as a tetramer. The strategy described here yields an explicit estimate of oligomeric size on the basis of fluorescence properties alone. Its broader application could resolve the general question of whether G protein-coupled receptors exist as dimers or larger oligomers. The size of an oligomer has functional implications, and such information can be expected to contribute to an understanding of the signaling process.  相似文献   

19.
Genotyping in closed tube is commonly performed using polymerase chain reaction (PCR) amplification and allele-specific oligonucleotide probes using fluorescence resonance energy transfer (FRET). Here we introduce a homogeneous human leukocyte antigen (HLA)–DQA1∗05 end-point PCR assay based on switchable lanthanide luminescence probe technology and a simple dried blood sample preparation. The switchable probe technology is based on two non-luminescent oligonucleotide probes: one carrying a non-luminescent lanthanide chelate and the other carrying a light-absorbing antenna ligand. Hybridization of the probes in adjacent positions to the target DNA leads to the formation of a highly luminescent lanthanide chelate complex by self-assembly of the reporter molecules. Performance of the HLA–DQA1∗05 assay was evaluated by testing blood samples collected on sample collection cards and was prepared by lysing the punched samples (3-mm discs) using alkaline reaction conditions and high temperature. Testing of 147 blood samples yielded 100% correlation to the heterogeneous DELFIA technology-based reference assay. Genotyping requires carefully designed probe sequences able to discriminate matched and mismatched target sequences by hybridization. Furthermore, definite genotype discrimination was achieved because inherently non-luminescent switchable probes together with time-resolved measurement mode led to very low background signal level and, therefore, very high signal differences averaging 54-fold between DQA1∗05 and other alleles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号