首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Infectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genus Isavirus, family Orthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV901_09 and rISAVrS6-NotI-HPR containing a NotI restriction site and rISAVS6/EGFP-HPR harboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5 × 105 PFU/ml, similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry.  相似文献   

3.
4.
The infectious salmon anemia virus (ISAV) is an orthomyxovirus-like virus infecting teleosts. The disease caused by this virus has had major economic consequences for the Atlantic salmon farming industry in Norway, Canada, and Scotland. In this work, we report the cloning and sequencing of an ISAV-specific cDNA comprising 2,245 bp with an open reading frame coding for a predicted protein with a calculated molecular weight of 80.5 kDa. The putative protein sequence shows the core polymerase motifs characteristic of all viral RNA-dependent RNA polymerases. Comparison of the conserved motifs with the corresponding regions of other segmented negative-stranded RNA viruses shows a closer relationship with members of the Orthomyxoviridae than with viruses in other families. The putative ISAV polymerase protein (PB1) has a length of 708 amino acids, a charge of +22 at neutral pH, and a pI of 9.9, which are consistent with the properties of the PB1 proteins of other members of the family. Calculations of the distances between the different PB1 proteins indicate that the ISAV is distantly related to the other members of the family but more closely related to the influenza viruses than to the Thogoto viruses. Based on these and previously published results, we propose that the ISAV comprises a new, fifth genus in the Orthomyxoviridae.  相似文献   

5.
Atlantic salmon (Salmo salar) is the most valuable farmed fish globally and there is much interest in optimizing its genetics and rearing conditions for growth and feed efficiency. Marine feed ingredients must be replaced to meet global demand, with challenges for fish health and sustainability. Metabolic models can address this by connecting genomes to metabolism, which converts nutrients in the feed to energy and biomass, but such models are currently not available for major aquaculture species such as salmon. We present SALARECON, a model focusing on energy, amino acid, and nucleotide metabolism that links the Atlantic salmon genome to metabolic fluxes and growth. It performs well in standardized tests and captures expected metabolic (in)capabilities. We show that it can explain observed hypoxic growth in terms of metabolic fluxes and apply it to aquaculture by simulating growth with commercial feed ingredients. Predicted limiting amino acids and feed efficiencies agree with data, and the model suggests that marine feed efficiency can be achieved by supplementing a few amino acids to plant- and insect-based feeds. SALARECON is a high-quality model that makes it possible to simulate Atlantic salmon metabolism and growth. It can be used to explain Atlantic salmon physiology and address key challenges in aquaculture such as development of sustainable feeds.  相似文献   

6.
The Caliciviridae family comprises positive-sense RNA viruses of medical and veterinary significance. In humans, caliciviruses are a major cause of acute gastroenteritis, while in animals respiratory illness, conjunctivitis, stomatitis, and hemorrhagic disease are documented. Investigation of virus-host interactions is limited by a lack of culture systems for many viruses in this family. Feline calicivirus (FCV), a member of the Vesivirus genus, provides a tractable model, since it may be propagated in cell culture. Feline junctional adhesion molecule 1 (fJAM-1) was recently identified as a functional receptor for FCV. We have analyzed the structure of this virus-receptor complex by cryo-electron microscopy and three-dimensional image reconstruction, combined with fitting of homology modeled high-resolution coordinates. We show that domain 1 of fJAM-1 binds to the outer face of the P2 domain of the FCV capsid protein VP1, inducing conformational changes in the viral capsid. This study provides the first structural view of a native calicivirus-protein receptor complex and insights into the mechanisms of virus attachment and uncoating.  相似文献   

7.
The recent human infection with avian influenza virus revealed that H9N2 influenza virus is the gene donor for H7N9 and H10N8 viruses infecting humans. The crucial role of H9N2 viruses at the animal-human interface might be due to the wide host range, adaptation in both poultry and mammalian, and extensive gene reassortment. As the most prevalent subtype of influenza viruses in chickens in China, H9N2 also causes a great economic loss for the poultry industry, even under the long-term vaccination programs. The history, epidemiology, biological characteristics, and molecular determinants of H9N2 influenza virus are reviewed in this paper. The contribution of H9N2 genes, especially RNP genes, to the infection of humans needs to be investigated in the future.  相似文献   

8.
9.
Two Norwegian isolates of the monogenean Gyrodactylus salaris Malmberg, 1957 with identical cytochrome c oxidase subunit I barcodes from different hosts, show highly divergent biological and behavioural characteristics. The Lierelva parasite strain, typically infecting Atlantic salmon, Salmo salar L., grew exponentially on Atlantic salmon, but the Pålsbufjorden parasite strain, commonly infecting Arctic charr, Salvelinus alpinus L., grew slowly on both hosts and was non-pathogenic to Atlantic salmon. Both parasite strains reproduced successfully on Arctic charr, but the Atlantic salmon-infecting Lierelva strain grew faster on both hosts. Experiments with isolated worms revealed differences in reproductive rates which may account for the observed population differences. Atlantic salmon parasites consistently gave birth at an earlier age than the Arctic charr parasites, with the differential increasing from 1 day for the first birth up to 2–4 days for the third birth. Arctic charr-infecting parasites were more active on Atlantic salmon than salmon parasites on Arctic charr, a behavioural strategy leading to enhanced G. salaris mortality. Sequencing of 10 kb of nuclear genomic markers revealed only four single nucleotide polymorphisms, confirming that isolates of G. salaris with differences in fitness traits influencing establishment, fecundity and behaviour may be remarkably similar at a molecular level. The framework for reporting and control of G. salaris requires re-appraisal in light of the discovery of variants with such divergent biology.  相似文献   

10.
The extent and effect of disease interaction and pathogen exchange between wild and farmed fish populations is an ongoing debate and an area of research that is difficult to explore. The objective of this study was to investigate pathogen transmission between farmed and wild Atlantic salmon (Salmo salar L.) populations in Norway by means of molecular epidemiology. Piscine reovirus (PRV) was selected as the model organism as it is widely distributed in both farmed and wild Atlantic salmon in Norway, and because infection not necessarily will lead to mortality through development of disease. A matrix comprised of PRV protein coding sequences S1, S2 and S4 from wild, hatchery-reared and farmed Atlantic salmon in addition to one sea-trout (Salmo trutta L.) was examined. Phylogenetic analyses based on maximum likelihood and Bayesian inference indicate long distance transport of PRV and exchange of virus between populations. The results are discussed in the context of Atlantic salmon ecology and the structure of the Norwegian salmon industry. We conclude that the lack of a geographical pattern in the phylogenetic trees is caused by extensive exchange of PRV. In addition, the detailed topography of the trees indicates long distance transportation of PRV. Through its size, structure and infection status, the Atlantic salmon farming industry has the capacity to play a central role in both long distance transportation and transmission of pathogens. Despite extensive migration, wild salmon probably play a minor role as they are fewer in numbers, appear at lower densities and are less likely to be infected. An open question is the relationship between the PRV sequences found in marine fish and those originating from salmon.  相似文献   

11.
Antibody detection tests are rarely used for diagnostic purposes in fish diseases. Infectious salmon anaemia (ISA) caused by ISA virus (ISAV) is an emerging disease of Atlantic salmon Salmo salar L. The virus has also been isolated from diseased coho salmon Oncorhynchus kisutch in Chile. An indirect enzyme-linked immunosorbent assay (ELISA) that should facilitate serodiagnosis of ISAV infection, the study of epidemiology, and the control of ISA in farmed fishes has been developed using purified ISAV as the coating antigen, and monoclonal antibodies that detect fish immunoglobulins bound to the antigen on the plate. Application of the test to a random sample of farmed Atlantic salmon from the Bay of Fundy, New Brunswick, Canada, positively identified 5 of the 7 ISAV RT-PCR-positive fish, and all 10 RT-PCR-negative fish were also negative in the ELISA. Some RT-PCR-negative fish had an elevated non-specific antibody reactivity suggestive of chronic infection or resistance to ISAV. This test was also able to detect 11 of the 14 coho salmon pooled serum samples from a clinically affected farm in Chile that were positive by the virus neutralization (VN) test, and 2 of the 4 VN-negative samples. We conclude that this ELISA would be suitable as a routine test for ISAV infection or for assessing ISAV vaccine efficacy before placing smolts in sea cages, and for testing fishes in sea cages to detect level of resistance to ISA. The assay enables vaccination in combination with depopulation control methods.  相似文献   

12.
Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10−4), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses.  相似文献   

13.
All anadromous fishes, including juvenile salmon, encounter estuarine habitats as they transition from riverine to marine environments. We compare the estuarine use between juvenile Atlantic salmon (Salmo salar) in the Penobscot River estuary and Pacific salmon (Oncorhynchus spp.) in the Columbia River estuary. Both estuaries have been degraded by anthropogenic activities. Atlantic and Pacific salmon populations in both basins rely heavily on hatchery inputs for persistence. Pacific salmon, as a group, represent a continuum of estuarine use, from species that move through rapidly to those that make extensive use of estuarine habitats. While Atlantic salmon estuarine use is predominantly similar to rapidly moving Pacific salmon, they can exhibit nearly the entire range of Pacific salmon estuarine use. Both slow and rapidly migrating Atlantic and Pacific salmon actively feed in estuarine environments, consuming insect and invertebrate prey. Interactions between juvenile salmon and estuarine fish communities are poorly understood in both estuaries, although they experience similar avian and marine mammal predators. Estuaries are clearly important for Atlantic and Pacific salmon, yet our understanding of this use is currently insufficient to make informed judgments about habitat quality or overall estuary health. This review of salmonid migration through and residency within estuaries identifies actions that could hasten restoration of both Atlantic and Pacific salmon populations.  相似文献   

14.
Few studies have yet addressed the functional aspects of MHC molecules in fish. To lay the foundation for this, we evaluated the association between disease resistance and MHC class I and class II polymorphism in Atlantic salmon. Standardized disease challenge trials were performed on a semi-wild Atlantic salmon population with subsequent MHC typing and statistical analysis. The pathogens employed were infectious salmon anaemia virus (ISAV) causing infectious salmon anaemia and the Aeromonas salmonicida bacteria causing furunculosis. The material consisted of 1,182 Atlantic salmon from 33 families challenged with A. salmonicida and 1,031 Atlantic salmon from 25 families challenged with ISAV. We found highly significant associations between resistance towards infectious diseases caused by both pathogens and MH class I and class II polymorphism in Atlantic salmon. The observed associations were detected due to independently segregating MH class I and class II single loci, and inclusion of a large number of fish allowing an extensive statistical analysis.  相似文献   

15.
Phosphate (PO(4)) is an important limiting nutrient in marine environments. Marine cyanobacteria scavenge PO(4) using the high-affinity periplasmic phosphate binding protein PstS. The pstS gene has recently been identified in genomes of cyanobacterial viruses as well. Here, we analyse genes encoding transporters in genomes from viruses that infect eukaryotic phytoplankton. We identified inorganic PO(4) transporter-encoding genes from the PHO4 superfamily in several virus genomes, along with other transporter-encoding genes. Homologues of the viral pho4 genes were also identified in genome sequences from the genera that these viruses infect. Genome sequences were available from host genera of all the phytoplankton viruses analysed except the host genus Bathycoccus. Pho4 was recovered from Bathycoccus by sequencing a targeted metagenome from an uncultured Atlantic Ocean population. Phylogenetic reconstruction showed that pho4 genes from pelagophytes, haptophytes and infecting viruses were more closely related to homologues in prasinophytes than to those in what, at the species level, are considered to be closer relatives (e.g. diatoms). We also identified PHO4 superfamily members in ocean metagenomes, including new metagenomes from the Pacific Ocean. The environmental sequences grouped with pelagophytes, haptophytes, prasinophytes and viruses as well as bacteria. The analyses suggest that multiple independent pho4 gene transfer events have occurred between marine viruses and both eukaryotic and bacterial hosts. Additionally, pho4 genes were identified in available genomes from viruses that infect marine eukaryotes but not those that infect terrestrial hosts. Commonalities in marine host-virus gene exchanges indicate that manipulation of host-PO(4) uptake is an important adaptation for viral proliferation in marine systems. Our findings suggest that PO(4) -availability may not serve as a simple bottom-up control of marine phytoplankton.  相似文献   

16.
Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. Because the genomes are the smallest and simplest among viruses, betanodaviruses have been well studied using a reversed genetics system as model viruses. However, studies of virus-host interactions have progressed slowly because permissive hosts for betanodaviruses (basically larvae and juveniles of marine fish) are only available for limited periods of the year and are not suitable for the construction of a genetic engineering system. To obtain a model fish species that are not subject to these problems, 21 freshwater fish species were injected intramuscularly with a betanodavirus (redspotted grouper nervous necrosis virus) and tested for their susceptibility to the virus. Based on their responses, the tested fish were classified into 3 groups: 4 susceptible fish, 10 less susceptible fish, and 7 resistant fish. The susceptible fish, celebes rainbowfish Telmatherina ladigesi, threadfin rainbowfish Iriatherina werneri, dwarf rainbowfish Melanotaenia praecox, and medaka Oryzias latipes, exhibited erratic swimming and eventually died within 10 d post-inoculation. The virus was specifically localized in the brains, spinal cords, and retinas of the infected fish, similar to the pattern of infection in naturally infected marine fish. We believe that these susceptible freshwater fish species could act as good host models for betanodavirus-fish interaction studies.  相似文献   

17.
Viral hemorrhagic septicemia virus (VHSV) infects a wide range of marine fish species. To study the occurrence of VHSV in wild marine fish populations in Norwegian coastal waters and fjord systems a total of 1927 fish from 39 different species were sampled through 5 research cruises conducted in 2009 to 2011. In total, VHSV was detected by rRT-PCR in twelve samples originating from Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), whiting (Merlangius merlangus) and silvery pout (Gadiculus argenteus). All fish tested positive in gills while four herring and one silvery pout also tested positive in internal organs. Successful virus isolation in cell culture was only obtained from one pooled Atlantic herring sample which shows that today''s PCR methodology have a much higher sensitivity than cell culture for detection of VHSV. Sequencing revealed that the positive samples belonged to VHSV genotype Ib and phylogenetic analysis shows that the isolate from Atlantic herring and silvery pout are closely related. All positive fish were sampled in the same area in the northern county of Finnmark. This is the first detection of VHSV in Atlantic herring this far north, and to our knowledge the first detection of VHSV in silvery pout. However, low prevalence of VHSV genotype Ib in Atlantic herring and other wild marine fish are well known in other parts of Europe. Earlier there have been a few reports of disease outbreaks in farmed rainbow trout with VHSV of genotype Ib, and our results show that there is a possibility of transfer of VHSV from wild to farmed fish along the Norwegian coast line. The impact of VHSV on wild fish is not well documented.  相似文献   

18.
To better understand the role of vector transmission of aquatic viruses, we established an in vivo virus-parasite challenge specifically to address (1) whether Lepeophtheirus salmonis can acquire infectious haematopoietic necrosis virus (IHNV) after water bath exposure or via parasitizing infected Atlantic salmon Salmo salar and if so, define the duration of this association and (2) whether L. salmonis can transmit IHNV to naive Atlantic salmon and whether this transmission requires attachment to the host. Salmon lice which were water bath-exposed to 1 x 10(5) plaque-forming units (pfu) ml(-1) of IHNV for 1 h acquired the virus (2.1 x 10(4) pfu g(-1)) and remained IHNV-positive for 24 h post exposure. After parasitizing IHNV-infected hosts (viral titer in fish mucus 3.3 x 10(4) pfu ml(-1)) salmon lice acquired IHNV (3.4 x 10(3) pfu g(-1)) and remained virus-positive for 12 h. IHNV-positive salmon lice generated through water bath exposure or after parasitizing infected Atlantic salmon successfully transmitted IHNV, resulting in 76.5 and 86.6% of the exposed Atlantic salmon testing positive for IHNV, respectively. In a second experiment, only salmon lice that became IHNV-positive through water bath exposure transmitted IHNV to 20% of the naive fish, and no virus was transmitted when IHNV-infected salmon lice were cohabitated but restrained from attaching to naive fish. Under laboratory conditions, adult L. salmonis can acquire IHNV and transmit it to naive Atlantic salmon through parasitism. However, the ephemeral association of IHNV with L. salmonis indicates that the salmon louse act as a mechanical rather than a biological vector or reservoir.  相似文献   

19.
In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.  相似文献   

20.
Freshwater lakes and ponds present an ecological interface between humans and a variety of host organisms. They are a habitat for the larval stage of many insects and may serve as a medium for intraspecies and interspecies transmission of viruses such as avian influenza A virus. Furthermore, freshwater bodies are already known repositories for disease-causing viruses such as Norwalk Virus, Coxsackievirus, Echovirus, and Adenovirus. While RNA virus populations have been studied in marine environments, to this date there has been very limited analysis of the viral community in freshwater. Here we present a survey of RNA viruses in Lake Needwood, a freshwater lake in Maryland, USA. Our results indicate that just as in studies of other aquatic environments, the majority of nucleic acid sequences recovered did not show any significant similarity to known sequences. The remaining sequences are mainly from viral types with significant similarity to approximately 30 viral families. We speculate that these novel viruses may infect a variety of hosts including plants, insects, fish, domestic animals and humans. Among these viruses we have discovered a previously unknown dsRNA virus closely related to Banna Virus which is responsible for a febrile illness and is endemic to Southeast Asia. Moreover we found multiple viral sequences distantly related to Israeli Acute Paralysis virus which has been implicated in honeybee colony collapse disorder. Our data suggests that due to their direct contact with humans, domestic and wild animals, freshwater ecosystems might serve as repositories of a wide range of viruses (both pathogenic and non-pathogenic) and possibly be involved in the spread of emerging and pandemic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号