首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bacterial virulence depends on the correct folding of surface-exposed proteins, a process catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. The Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host interactive biology, while the function of DsbA3 remains unknown.This work reports the biochemical characterization of the three neisserial enzymes and the crystal structures of DsbA1 and DsbA3. As predicted by sequence homology, both enzymes adopt the classic Escherichia coli DsbA fold. The most striking feature shared by all three proteins is their exceptional oxidizing power. With a redox potential of − 80 mV, the neisserial DsbAs are the most oxidizing thioredoxin-like enzymes known to date. Consistent with these findings, thermal studies indicate that their reduced form is also extremely stable. For each of these enzymes, this study shows that a threonine residue found within the active-site region plays a key role in dictating this extraordinary oxidizing power. This result highlights how residues located outside the CXXC motif may influence the redox potential of members of the thioredoxin family.  相似文献   

2.
Results from previous studies have suggested that an intramolecular disulphide bond in the exoprotein pullulanase is needed for its recognition and transport across the outer membrane. This interpretation of the data is shown here to be incorrect: pullulanase devoid of all potential disulphide bonds is secreted with apparently the same efficiency as the wild-type protein. Furthermore, the periplasmic disulphide bond, oxidoreductase DsbA, previously shown to catalyse the formation of a disulphide bond in pullulanase and to decrease its transit time in the periplasm, is shown here to be required for the rapid secretion of pullulanase devoid of disulphide bonds. Several possible explanations for the role of DsbA in pullulanase secretion are discussed.  相似文献   

3.
Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1-NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different stages of pathogenesis; however, the molecular and structural bases of the different roles of NmDsbAs are unclear. With the aim of determining the molecular basis for substrate specificity and how this correlates to pathogenesis, we undertook a biochemical and structural characterization of the three NmDsbAs. We report the 2.0-Å-resolution crystal structure of the oxidized form of NmDsbA1, which adopted a canonical DsbA fold similar to that observed in the structures of NmDsbA3 and Escherichia coli DsbA (EcDsbA). Structural comparisons revealed variations around the active site and candidate peptide-binding region. Additionally, we demonstrate that all three NmDsbAs are strong oxidases with similar redox potentials; however, they differ from EcDsbA in their ability to be reoxidized by E. coli DsbB. Collectively, our studies suggest that the small structural differences between the NmDsbA enzymes and EcDsbA are functionally significant and are the likely determinants of substrate specificity.  相似文献   

4.
Disulfide oxidoreductases are viewed as foldases that help to maintain proteins on productive folding pathways by enhancing the rate of protein folding through the catalytic incorporation of disulfide bonds. SrgA, encoded on the virulence plasmid pStSR100 of Salmonella enterica serovar Typhimurium and located downstream of the plasmid-borne fimbrial operon, is a disulfide oxidoreductase. Sequence analysis indicates that SrgA is similar to DsbA from, for example, Escherichia coli, but not as highly conserved as most of the chromosomally encoded disulfide oxidoreductases from members of the family Enterobacteriaceae. SrgA is localized to the periplasm, and its disulfide oxidoreductase activity is dependent upon the presence of functional DsbB, the protein that is also responsible for reoxidation of the major disulfide oxidoreductase, DsbA. A quantitative analysis of the disulfide oxidoreductase activity of SrgA showed that SrgA was less efficient than DsbA at introducing disulfide bonds into the substrate alkaline phosphatase, suggesting that SrgA is more substrate specific than DsbA. It was also demonstrated that the disulfide oxidoreductase activity of SrgA is necessary for the production of plasmid-encoded fimbriae. The major structural subunit of the plasmid-encoded fimbriae, PefA, contains a disulfide bond that must be oxidized in order for PefA stability to be maintained and for plasmid-encoded fimbriae to be assembled. SrgA efficiently oxidizes the disulfide bond of PefA, while the S. enterica serovar Typhimurium chromosomally encoded disulfide oxidoreductase DsbA does not. pefA and srgA were also specifically expressed at pH 5.1 but not at pH 7.0, suggesting that the regulatory mechanisms involved in pef gene expression are also involved in srgA expression. SrgA therefore appears to be a substrate-specific disulfide oxidoreductase, thus explaining the requirement for an additional catalyst of disulfide bond formation in addition to DsbA of S. enterica serovar Typhimurium.  相似文献   

5.
Building bridges: disulphide bond formation in the cell   总被引:26,自引:1,他引:25  
Disulphides are often vital for the folding and stability of proteins. Dedicated enzymatic systems have been discovered that catalyse the formation of disulphides in the periplasm of prokaryotes. These discoveries provide compelling evidence for the actual catalysis of protein folding in vivo. Disulphide bond formation in Escherichia coli is catalysed by at least three ‘Dsb’ proteins; DsbA, -B and -C. The DsbA protein has an extremely reactive, oxidizing disulphide which it simply donates directly to other proteins. DsbB is required for the reoxidation of DsbA. DsbC is active in disulphide rearrangements and appears to work synergistically with DsbA. The relative rarity of disulphides in cytoplasmic proteins appears to be dependent upon a disulphide-destruction machine. One pivotal cog in this machine is thioredoxin reductase.  相似文献   

6.
Disulfide bonds play a critical role in the stabilization of the immunoglobulin β-sandwich sandwich. Under reducing conditions, such as those that prevail in the cytoplasm, disulfide bonds do not normally form and as a result most antibodies expressed in that compartment (intrabodies) accumulate in a misfolded and inactive state. We have developed a simple method for the quantitative isolation of antibody fragments that retain full activity under reducing conditions from large mutant libraries. In E. coli, inactivation of the cysteine oxidoreductase DsbA abolishes protein oxidation in the periplasm, which leads to the accumulation of scFvs and other disulfide-containing proteins in a reduced form. Libraries of mutant scFvs were tethered onto the inner membrane of dsbA cells and mutants that could bind fluorescently labeled antigen in the reducing periplasm were screened by Anchored Periplasmic Expression (APEx; Harvey et al., Proc Natl Acad Sci USA 2004;101:9193–9198.). Using this approach, we isolated scFv antibody variants that are fully active when expressed in the cytoplasm or when the four Cys residues that normally form disulfides are substituted by Ser residues.  相似文献   

7.
A one-step mutant of Escherichia coli K-12 lacking both glucose-1-phosphatase (Agp) and pH 2.5 acid phosphatase (AppA) activities in the periplasmic space was isolated. The mutation which mapped close to ch1B, at 87 min on the E. coli linkage map, also caused the loss of alkaline phosphatase (PhoA) activity, even when this activity was expressed from TnphoA fusions to genes encoding periplasmic or membrane proteins. A DNA fragment that complements the mutation was cloned and shown to carry the dsbA gene, which encodes a periplasmic disulphide bond-forming factor. The mutant had an ochre triplet in dsbA, truncating the protein at amino acid 70. Introduction of TnphoA fusions into a plasmid-borne dsbA gene resulted in DsbA-PhoA hybrid proteins that were all exported to the periplasmic space in both dsbA + and dsbA strains. They belong to three different classes, depending on the length of the DsbA fragment fused to PhoA. When PhoA was fused to an amino-terminal DsbA heptapeptide, the protein was only seen in the periplasm of a dsbA + strain, as in the case of wild-type PhoA. Hybrid proteins missing up to 29 amino acids at the carboxy-terminus of DsbA were stable and retained both the DsbA and PhoA activities. Those with shorter DsbA fragments that still carried the -Cys-ProHis-Cys-motif were rapidly degraded (no DsbA activity). The presence is discussed of a structural domain lying around amino acid 170 of DsbA and which is probably essential for its folding into a proteolytic-resistant and enzymatically active form.  相似文献   

8.
The formation of native disulfide bonds in complex eukaryotic proteins expressed in Escherichia coli is extremely inefficient. Tissue plasminogen activator (tPA) is a very important thrombolytic agent with 17 disulfides, and despite numerous attempts, its expression in an active form in bacteria has not been reported. To achieve the production of active tPA in E. coli, we have investigated the effect of cooverexpressing native (DsbA and DsbC) or heterologous (rat and yeast protein disulfide isomerases) cysteine oxidoreductases in the bacterial periplasm. Coexpression of DsbC, an enzyme which catalyzes disulfide bond isomerization in the periplasm, was found to dramatically increase the formation of active tPA both in shake flasks and in fermentors. The active protein was purified with an overall yield of 25% by using three affinity steps with, in sequence, lysine-Sepharose, immobilized Erythrina caffra inhibitor, and Zn-Sepharose resins. After purification, approximately 180 μg of tPA with a specific activity nearly identical to that of the authentic protein can be obtained per liter of culture in a high-cell-density fermentation. Thus, heterologous proteins as complex as tPA may be produced in an active form in bacteria in amounts suitable for structure-function studies. In addition, these results suggest the feasibility of commercial production of extremely complex proteins in E. coli without the need for in vitro refolding.  相似文献   

9.
Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.  相似文献   

10.
Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI MS) was applied to develop a proteomics-based method to detect and identify Neisseria species. Heat-inactivated clinical isolate cell suspensions of Neisseria gonorrhoeae and strains belonging to five serogroups (A, B, C, W135, and Y) of Neisseria meningitidis were subjected to on-probe protein/peptide extraction and tryptic digestion followed by AP-MALDI tandem MS (MS/MS)-based proteomic analysis. Amino acid sequences derived from three protonated peptides with m/z values of 1743.8, 1894.8, and 1946.8 were identified by AP-MALDI MS/MS and MASCOT proteome database search analysis as belonging to neisserial acyl carrier protein, neisserial-conserved hypothetical protein, and neisserial putative DNA binding protein, respectively. These three peptide masses can thus be potential biomarkers for neisserial species identification by AP-MALDI MS.  相似文献   

11.
12.
In the Escherichia coli system catalysing oxidative protein folding, disulphide bonds are generated by the cooperation of DsbB and ubiquinone and transferred to substrate proteins through DsbA. The structures solved so far for different forms of DsbB lack the Cys104–Cys130 initial‐state disulphide that is directly donated to DsbA. Here, we report the 3.4 Å crystal structure of a DsbB–Fab complex, in which DsbB has this principal disulphide. Its comparison with the updated structure of the DsbB–DsbA complex as well as with the recently reported NMR structure of a DsbB variant having the rearranged Cys41–Cys130 disulphide illuminated conformational transitions of DsbB induced by the binding and release of DsbA. Mutational studies revealed that the membrane‐parallel short α‐helix of DsbB has a key function in physiological electron flow, presumably by controlling the positioning of the Cys130‐containing loop. These findings demonstrate that DsbB has developed the elaborate conformational dynamism to oxidize DsbA for continuous protein disulphide bond formation in the cell.  相似文献   

13.
Disulphide bond formation catalysed by thiol-disulphide oxidoreductases (TDORs) is a universally conserved mechanism for stabilizing extracytoplasmic proteins. In Escherichia coli, disulphide bond formation requires a concerted action of distinct TDORs in thiol oxidation and subsequent quinone reduction. TDOR function in other bacteria has remained largely unexplored. Here we focus on TDORs of low-GC Gram-positive bacteria, in particular DsbA of Staphylococcus aureus and BdbA-D of Bacillus subtilis. Phylogenetic analyses reveal that the homologues DsbA and BdbD cluster in distinct groups typical for Staphylococcus and Bacillus species respectively. To compare the function of these TDORs, DsbA was produced in various bdb mutants of B. subtilis. Next, we assessed the ability of DsbA to sustain different TDOR-dependent processes, including heterologous secretion of E. coli PhoA, competence development and bacteriocin (sublancin 168) production. The results show that DsbA can function in all three processes. While BdbD needs a quinone oxidoreductase for activity, DsbA activity appears to depend on redox-active medium components. Unexpectedly, both quinone oxidoreductases of B. subtilis are sufficient to sustain production of sublancin. Moreover, DsbA can functionally replace these quinone oxidoreductases in sublancin production. Taken together, our unprecedented findings imply that TDOR systems of low-GC Gram-positive bacteria have a modular composition.  相似文献   

14.
Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein‐disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S‐S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared with E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant‐negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single‐player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2.  相似文献   

15.
An Erwinia chrysanthemi gene able to complement an Escherichia coli dsbA mutation has been cloned and sequenced. This gene codes for a periplasmic protein with disulphide isomerase activity that has 69% identity and 94% similarity with the E. coli DsbA protein. An E. chrysanthemi dsbA-uidA fusion mutant has been constructed. dsbA expression seems to be constitutive. This mutant has multiple phenotypes resulting from the absence of disulphide bond formation in periplasmic and secreted proteins. Pectate lyases and the cellulase EGZ are rapidly degraded in the periplasm of the dsbA mutant. E. chrysanthemi synthesizes another periplasmic protein with disulphide isomerase activity, namely DsbC. The dsbC gene introduced on a multicopy plasmid in a dsbA mutant was only partially able to restore EGZ secretion, indicating that even if DsbA and DsbC possess disulphide oxydoreductase activity, they are not completely interchangeable. Moreover, pectate lyases expressed in an E. coli dsbA mutant were very instable but their stability was unaffected in a dsbC mutant. These results indicate that DsbA and DsbC could have different substrate specificities.  相似文献   

16.
Neisseria meningitidis expresses a heterogeneous populationof lipooligosaccharide (LOS) inner cores variously substitutedwith 1-3-linked glucose and O-3, O-6, and O-7 linked phosphoethanolamine(PEA), as well as glycine, attached to HepII. Combinations ofthese attachments to the LOS inner core represent immunodominantepitopes that are being exploited as future vaccine candidates.Historically, each LOS immunotype was structurally assessedand prescribed a certain unique inner core epitope. We reportthat a single isolate, strain NMB, possesses the capacity toproduce all of the known neisserial LOS inner core immunotypestructures. Analysis of the inner cores from parental LOS revealedthe presence or absence of 1,3-linked glucose, O-6 and/or O-7linked PEA, in addition to glycine attached at the 7 positionof the HepII inner core. Identification and inactivation oflpt-6 in strain NMB resulted in the loss of both O-6 and O-7linked PEA groups from the LOS inner core, suggesting that Lpt-6of strain NMB may have bifunctional transferase activities orthat the O-6 linked PEA groups once attached to the inner coreundergo nonenzymatic transfer to the O-7 position of HepII.Although O-3 linked PEA was not detected in parental LOS innercores devoid of 1-3-linked glucose residues, LOS glycoformsbearing O-3 PEA groups accumulated in a truncated mutant, NMBlgtK(Hep2Kdo2-lipid A). Because these structures disappeared uponinactivation of the lpt-3 locus, strain NMB expresses a functionalO-3 PEA transferase. The LOS glycoforms expressed by NMBlgtKwere also devoid of glycine attachments, indicating that glycinewas added to the inner core after the completion of the -chainby LgtK. In conclusion, strain NMB has the capability to expressall known inner core structures, but in in vitro culture L2and L4 immunotype structures are predominantly expressed.  相似文献   

17.
The assembly of anaerobically induced electron transfer chains in Escherichia coli strains defective in periplasmic disulphide bond formation was investigated. Strains deficient in DsbA, DsbB or DipZ (DsbD) were unable to catalyse formate-dependent nitrite reduction (Nrf activity) or synthesize any of the known c-type cytochromes. The Nrf+ activity and cytochrome c content of mutants defective in DsbC, DsbE or DsbF were similar to those of the parental, wild-type strain. Neither DsbC expressed from a multicopy plasmid nor a second mutation in dipZ (dsbD) was able to compensate for a dsbA mutation by restoring nitrite reductase activity and cytochrome c synthesis. In contrast, only the dsbB and dipZ (dsbD) strains were defective in periplasmic nitrate reductase activity, suggesting that DsbB might fulfil an additional role in anaerobic electron transport. Mutants defective in dipZ (dsbD) were only slightly more sensitive to Cu++ ions at concentrations above 5?mM than the parental strain, but strains defective in DsbA, DsbB, DsbC, DsbE or DsbF were unaffected. These results are consistent with our earlier proposals that DsbA, DsbB and DipZ (DsbD) are part of the same pathway for ensuring that haem groups are attached to the correct pairs of cysteine residues of apocytochromes c in the E. coli periplasm. However, neither DsbE nor DsbF are essential for the reduction of DipZ (DsbD).  相似文献   

18.
Protein folding in the periplasm of Escherichia coli   总被引:13,自引:0,他引:13  
With the discovery of molecular chaperones and the development of heterologous gene expression techniques, protein folding in bacteria has come into focus as a potentially limiting factor in expression and as a topic of interest in its own right. Many proteins of importance in biotechnology contain disulphide bonds, which form in the Escherichia coli periplasm, but most work on protein folding in the periplasm of E. coli is very recent and is often speculative. This MicroReview gives a short overview of the possible fates of a periplasmic protein from the moment it is translocated, as well as of the E. coli proteins involved in this process. After an introduction to the specific physiological situation in the periplasm of E. coli, we discuss the proteins that might help other proteins to obtain their correctly folded conformation — disulphide isomerase, rotamase, parts of the translocation apparatus and putative periplasmic chaperones — and briefly cover the guided assembly of multi-subunit structures. Finally, our MicroReview turns to the fate of misfolded proteins: degradation by periplasmic proteases and aggregation phenomena.  相似文献   

19.
In Gram-negative bacteria, thiol oxidoreductases catalyse the formation of disulphide bonds (DSB) in extracytoplasmic proteins. In this study, we sought to identify DSB-forming proteins required for assembly of macromolecular structures in Legionella pneumophila. Here we describe two DSB-forming proteins, one annotated as dsbA1 and the other annotated as a 27 kDa outer membrane protein similar to Com1 of Coxiella burnetii, which we designate as dsbA2. Both proteins are predicted to be periplasmic, and while dsbA1 mutants were readily isolated and without phenotype, dsbA2 mutants were not obtained. To advance studies of DsbA2, a cis-proline residue at position 198 was replaced with threonine that enables formation of stable disulphide-bond complexes with substrate proteins. Expression of DsbA2 P198T mutant protein from an inducible promoter produced dominant-negative effects on DsbA2 function that resulted in loss of infectivity for amoeba and HeLa cells and loss of Dot/Icm T4SS-mediated contact haemolysis of erythrocytes. Analysis of captured DsbA2 P198T-substrate complexes from L. pneumophila by mass spectrometry identified periplasmic and outer membrane proteins that included components of the Dot/Icm T4SS. More broadly, our studies establish a DSB oxidoreductase function for the Com1 lineage of DsbA2-like proteins which appear to be conserved among those bacteria also expressing T4SS.  相似文献   

20.
More than one fifth of the proteins encoded by the genome of Escherichia coli are destined to the bacterial cell envelope. Over the past 20 years, the mechanisms by which envelope proteins reach their three-dimensional structure have been intensively studied, leading to the discovery of an intricate network of periplasmic folding helpers whose members have distinct but complementary roles. For instance, the correct assembly of ß-barrel proteins containing disulfide bonds depends both on chaperones like SurA and Skp for transport across the periplasm and on protein folding catalysts like DsbA and DsbC for disulfide bond formation. In this review, we provide an overview of the current knowledge about the complex network of protein folding helpers present in the periplasm of E. coli and highlight the questions that remain unsolved. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号