首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S-nitrosoglutathione (GSNO) involved in storage and transport of nitric oxide (NO) plays an important role in vascular homeostasis. Breakdown of GSNO can be catalyzed by γ-glutamyltransferase (GGT). We investigated whether vascular GGT influences the vasorelaxant effect of GSNO in isolated rat aorta. Histochemical localization of GGT and measurement of its activity were performed by using chromogenic substrates in sections and in aorta homogenates, respectively. The role of GGT in GSNO metabolism was evaluated by measuring GSNO consumption rate (absorbance decay at 334 nm), NO release was visualized and quantified with the fluorescent probe 4,5-diaminofluorescein diacetate. The vasorelaxant effect of GSNO was assayed using isolated rat aortic rings (in the presence or absence of endothelium). The role of GGT was assessed by stimulating enzyme activity with cosubstrate glycylglycine, as well as using two independent inhibitors, competitive serine borate complex and non-competitive acivicin. Specific GGT activity was histochemically localized in the endothelium. Consumption of GSNO and release of free NO decreased and increased in presence of serine borate complex and glycylglycine, respectively. In vasorelaxation experiments with endothelium-intact aorta, the half maximal effective concentration of GSNO (EC50 = 3.2±0.5.10−7 M) increased in the presence of the two distinct GGT inhibitors, serine borate complex (1.6±0.2.10−6 M) and acivicin (8.3±0.6.10−7 M), while it decreased with glycylglycine (4.7±0.9.10−8 M). In endothelium-denuded aorta, EC50 for GSNO alone increased to 2.3±0.3.10−6 M, with no change in the presence of serine borate complex. These data demonstrate the important role of endothelial GGT activity in mediating the vasorelaxant effect of GSNO in rat aorta under physiological conditions. Because therapeutic treatments based on GSNO are presently under development, this endothelium-dependent mechanism involved in the vascular effects of GSNO should be taken into account in a pharmacological perspective.  相似文献   

2.
3.
Acting on the glucocorticoid receptor (NR3C1), glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2×glucocorticoid response element (GRE) reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF) or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h) was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK) inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3 expression by TNF. Finally, formoterol-enhanced 2×GRE reporter activity was also proportional to agonist efficacy and functionally reversed repression by TNF. As similar effects were apparent on glucocorticoid-induced gene expression, the most effective strategy to overcome glucocorticoid resistance in this model was addition of formoterol to high efficacy NR3C1 agonists.  相似文献   

4.
5.
Oxysophocarpine (OSC), an alkaloid isolated from Sophora flavescens Ait, has been traditionally used as a medicinal agent based on the observed pharmacological effects. In this study, the direct effect of OSC against neuronal injuries induced by oxygen and glucose deprivation (OGD) in neonatal rat primary-cultured hippocampal neurons and its mechanisms were investigated. Cultured hippocampal neurons, which were exposed to OGD for 2 h followed by a 24 h reoxygenation, were used as an in vitro model of ischemia and reperfusion. 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) assay were used to confirm neural damage and to further evaluate the protective effects of OSC. The concentration of intracellular-free calcium [Ca2+]i and mitochondrial membrane potential (MMP) were measured to determine the intracellular mechanisms and to further estimate the degree of neuronal damage. Changes in expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, p-ERK1/2, p-JNK1/2, and p-p38 MAPK were also observed in the in vitro model. It was shown that OSC (0.8, 2, or 5 µmol/L) significantly attenuated the increased absorbance of MTT, and the release of LDH manifests the neuronal damage by the OGD/R. Meanwhile, the pretreatment of the neurons during the reoxygenation period with OSC significantly increased MMP; it also inhibited [Ca2+]i the elevation in a dose-dependent manner. Furthermore, the pretreatment with OSC (0.8, 2, or 5 µmol/L) significantly down-regulated expressions of IL-1β, TNF-α, p-ERK1/2, p-JNK1/2, and p-p38 MAPK in neonatal rat primary-cultured hippocampal neurons induced by OGD/R injury. In conclusion, OSC displays a protective effect on OGD-injured hippocampal neurons by attenuating expression of inflammatory factors via down-regulated the MAPK signaling pathway.  相似文献   

6.
7.
8.
Human cystathionine β-synthase (CBS) catalyzes a pyridoxal 5′-phosphate (PLP) dependent β-replacement reaction to synthesize cystathionine from serine and homocysteine. The enzyme is unique in bearing not only a catalytically important PLP but also heme. In order to study a regulatory process mediated by heme, we performed mutagenesis of Arg-51 and Arg-224, which have hydrogen-bonding interactions with propionate side chains of the prosthetic group. It was found that the arginine mutations decrease CBS activity by approximately 50%. The results indicate that structural changes in the heme vicinity are transmitted to PLP existing 20 Å away from heme. A possible explanation of our results is discussed on the basis of CBS structure.  相似文献   

9.
Amyloid aggregation has been associated with numerous human pathological diseases. A recent study has demonstrated that silk fibroin intermittently endorses amyloidogenesis in vivo. In the current study, we explored the propensity of silk fibroin to undergo amyloid-like aggregation and its prevention using an optimized concoction of curcumin with β-cyclodextrin. Aggregation of silk fibroin resulted in the formation of fibrils with a diameter of ~3.2 nm. However, addition of the optimized concentration of curcumin and β-cyclodextrin to silk fibroin inhibited aggregation and preserved the random coil conformation even under aggregation inducing conditions, as demonstrated by CD and FTIR spectroscopy. Benzene rings of curcumin interact with the aromatic residues of fibroin via hydrophobic interactions. However, β-cyclodextrin preferentially interacts with the non-polar residues, which are the core components for nucleation dependent protein aggregation. The present study demonstrates the ability of the concoction of curcumin and β-cyclodextrin in tuning the self assembly process of fibroin. It also provides a platform to explore the assembly process of nano-fibril and hierarchical structures in vitro along with a novel insight for designing clinically relevant silk-based functional biomaterials.  相似文献   

10.
The Nav1.6 voltage-gated sodium channel α subunit isoform is abundantly expressed in the adult rat brain. To assess the functional modulation of Nav1.6 channels by the auxiliary β1 subunit we expressed the rat Nav1.6 sodium channel α subunit by stable transformation in HEK293 cells either alone or in combination with the rat β1 subunit and assessed the properties of the reconstituted channels by recording sodium currents using the whole-cell patch clamp technique. Coexpression with the β1 subunit accelerated the inactivation of sodium currents and shifted the voltage dependence of channel activation and steady-state fast inactivation by approximately 5–7 mV in the direction of depolarization. By contrast the β1 subunit had no effect on the stability of sodium currents following repeated depolarizations at high frequencies. Our results define modulatory effects of the β1 subunit on the properties of rat Nav1.6-mediated sodium currents reconstituted in HEK293 cells that differ from effects measured previously in the Xenopus oocyte expression system. We also identify differences in the kinetic and gating properties of the rat Nav1.6 channel expressed in the absence of the β1 subunit compared to the properties of the orthologous mouse and human channels expressed in this system.  相似文献   

11.
Summary A preparation of three C-terminal fragments of the platelet protein -thromboglobulin was previously described to have immunomodulatory properties on phagocytic cells. One of the components is obviously identical to the recently described neutrophil-activating peptide 2 (NAP-2). In further investigations on this protein preparation (called factor C) we are able to show an additional influence on the tumour-cytolytic activities of mononuclear cells. Total neutralization of the factor C effect, by treating a factor C preparation with specific monoclonal antibody C24 prior to application in cell culture, proved that the effect is really restricted to factor C proteins. If factor C is given in combination with natural interleukin-2 (IL-2) a dose-dependent suppression of IL-2-mediated natural killer lymphokine-activated killer activity can be measured, which is first detectable 72 h after addition of factor C. Suppression does not occur if the both factors are added within a time interval of more than 12 h. Depletion of monocytes from mononuclear cells has no effect on factor-C-mediated cytotoxicity, demonstrating that factor C acts directly on lymphoid cells.  相似文献   

12.
A peptide with 42 amino acid residues (Aβ42) plays a key role in the pathogenesis of the Alzheimer’s disease. It is highly prone to self aggregation leading to the formation of fibrils which are deposited in amyloid plaques in the brain of diseased individuals. In our study we established a method to analyze the aggregation behavior of the Aβ peptide with a combination of sedimentation velocity centrifugation and enhanced data evaluation software as implemented in the software package UltraScan. Important information which becomes accessible by this methodology is the s-value distribution and concomitantly also the shape-distribution of the Aβ peptide aggregates generated by self-association. With this method we characterized the aggregation modifying effect of a designed β-sheet breaker molecule. This compound is built from three head-to-tail connected aminopyrazole moieties and represents a derivative of the already described Tripyrazole. By addition of this compound to a solution of the Aβ42 peptide the maximum of the s-value distribution was clearly shifted to smaller s-values as compared to solutions where only the vehicle DMSO was added. This shift to smaller s-values was stable for at least 7 days. The information about size- and shape-distributions present in aggregated Aβ42 solutions was confirmed by transmission electron microscopy and by measurement of amyloid formation by thioflavin T fluorescence.  相似文献   

13.
Congenital cataract is a major cause of visual impairment and childhood blindness. The solubility and stability of crystallin proteins play critical roles in maintaining the optical transparency of the lens during the life span. Previous studies have shown that approximately 8.3%∼25% of congenital cataracts are inherited, and mutations in crystallins are the most common. In this study, we attempted to identify the genetic defect in a four-generation family affected with congenital cataracts. The congenital cataract phenotype of this four-generation family was identified as membranous cataract by slit-lamp photography. Mutation screening of the candidate genes detected a heterozygous c.465G→C change in the exon6 of the βB2-crystallin gene (CRYBB2) in all family members affected with cataracts, resulting in the substitution of a highly conserved Tryptophan to Cystine (p.W151C). The mutation was confirmed by restriction fragment length polymorphism (RFLP) analysis and found that the transition resulted in the absence of a BslI restriction site in the affected members of the pedigree. The outcome of PolyPhen-2 and SIFT analysis predicted that this W151C mutation would probably damage to the structure and function of βB2-crystallin. Wild type (wt) and W151C mutant βB2-crystallin were expressed in human lens epithelial cells (HLECs), and the fluorescence results showed that Wt-βB2-crystallin was evenly distributed throughout the cells, whereas approximately 34.7% of cells transfected with the W151C mutant βB2-crystallin formed intracellular aggregates. Taken together, these data suggest that the missense mutation in CRYBB2 gene leads to progressive congenital membranous cataract by impacting the solubility and function of βB2-crystallin.  相似文献   

14.
In lung cancer, the Epidermal Growth Factor Receptor (EGFR) is one of the main targets for clinical management of this disease. The effectiveness of therapies toward this receptor has already been linked to the expression of integrin receptor subunit β1 in NSCLC A549 cells. In this work we demonstrate that azurin, an anticancer therapeutic protein originated from bacterial cells, controls the levels of integrin β1 and its appropriate membrane localization, impairing the intracellular signaling cascades downstream these receptors and the invasiveness of cells. We show evidences that azurin when combined with gefitinib and erlotinib, tyrosine kinase inhibitors which targets specifically the EGFR, enhances the sensitivity of these lung cancer cells to these molecules. The broad effect of azurin at the cell surface level was examined by Atomic Force Microscopy. The Young 's module (E) shows that the stiffness of A549 lung cancer cells decreased with exposure to azurin and also gefitinib, suggesting that the alterations in the membrane properties may be the basis of the broad anticancer activity of this protein. Overall, these results show that azurin may be relevant as an adjuvant to improve the effects of other anticancer agents already in clinical use, to which patients often develop resistance hampering its full therapeutic response  相似文献   

15.
α-D-Mannosyl-maltotriose (Man-G3) were synthesized from methyl α-mannoside and maltotriose by the transfer action of α-mannosidase. (Man-G3)-βCD and (Man-G3)2-βCD were produced in about 20% and 4% yield, respectively when Aerobacter aerogenes pullulanase (160 units per 1 g of Man-G3) was incubated with the mixture of 1.6 M Man-G3 and 0.16 M βCD at 50°C for 4 days. The reaction products, (Man-G3)-βCD were separated to three peaks by HPLC analysis on a YMC-PACK A-323-3 column and (Man-G3)2-βCD were separated to several peaks by HPLC analysis on a Daisopak ODS column. The major product of (Man-G3)-βCDs was identified as 6-O-α-(63-O-α-D-mannosyl-maltotriosyl)-βCD by FAB-MS and NMR spectroscopies. The structures of (Man-G3)2-βCDs were analyzed by TOF-MS and NMR spectroscopies, and confirmed by comparison of elution profiles of their hydrolyzates by α-mannosidase and glucoamylase on a graphitized carbon column with those of the authentic di-glucosyl-βCDs. The structures of three main components of (Man-G3)2-βCDs were identified as 61,62-, 61,63- and 61,64-di-O-(63-O-α-D-mannosyl-maltotriosyl)-βCD.  相似文献   

16.
17.
A plethora of evidence suggests that protein misfolding and aggregation are underlying mechanisms of various neurodegenerative diseases, such as prion diseases and Alzheimer's disease(AD). Like prion diseases, AD has been considered as an infectious disease in the past decades as it shows strain specificity and transmission potential. Although it remains elusive how protein aggregation leads to AD, it is becoming clear that cellular prion protein(PrP~C ) plays an important role in AD pathogenesis. Here, we briefly reviewed AD pathogenesis and focused on recent progresses how PrP~C contributed to AD development. In addition, we proposed a potential mechanism to explain why infectious agents, such as viruses, conduce AD pathogenesis. Microbe infections cause Aβ deposition and upregulation of PrP~C , which lead to high affinity binding between Aβ oligomers and PrP~C . The interaction between PrP~C and Aβ oligomers in turn activates the Fyn signaling cascade, resulting in neuron death in the central nervous system(CNS). Thus, silencing PrP~C expression may turn out be an effective treatment for PrP~C dependent AD.  相似文献   

18.
Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains it's selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp) has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1) results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/-) mice and wild type littermate controls (Sepp1(+/+)) fed a high-selenium diet (1 mg Se/kg) were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/-) mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/-) mice on a 1 mg Se/kg diet and Sepp1(+/+) mice fed a selenium-deficient (0 mg Se/kg) diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS.  相似文献   

19.
Parkinson’s disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson’s disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = −4.4, p<0.001). There was significant coherence between the two sides in the beta range in 19 of the subjects. Coherence was selectively attenuated in the low beta range following levodopa (t22 = −2.7; p = 0.01). We also separately analysed amplitude co-modulation and phase synchronisation in the beta band and found significant amplitude co-modulation and phase locking values in 17 and 16 subjects respectively, off medication. There was a dissociable effect of levodopa on these measures, with a significant suppression only in low beta phase locking value (t22 = −2.8, p = 0.01) and not amplitude co-modulation. The absolute mean values of amplitude co-modulation (0.40±0.03) and phase synchronisation (0.29±0.02) off medication were, however, relatively low, suggesting that the two basal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei.  相似文献   

20.
Abstract

Several drugs known to induce differentiation in tumor cells were analyzed for their effects on the β-adrenergic receptor-coupled adenylate cyclase system in two human carcinoma cell lines, HeLa and A431. Each of the drugs was tested alone or in combination with sodium butyrate (NaBu), a known inducer of this signal transduction system. Puromycine amino nucleoside (PMAN) caused the largest increase in β-adrenergic receptors in HeLa cells followed by hexamethylenebisacetamide (HMBA) whereas 5′-azacytidine (5AZC) was ineffective. In addition, PMAN but not the others acted together with NaBu to elevate receptor levels 12-fold over control values. In contrast, HMBA and 5AZC were much more effective on A431 cells, PMAN caused only a slight increase in β receptors and none of the drugs acted in concert with NaBu. The increase in β receptors was usually accompanied by a corresponding increase in isoproterenol-stimulated adenylate cyclase activity. These effects of the drugs appeared to require protein synthesis as they were blocked by cycloheximide. In addition, some of the drugs caused a substantial decrease in basal adenylate cyclase activity. This effect on basal activity was abolished in cells treated with pertussis toxin, which ADP-ribosylates the inhibitory GTP-binding protein, Gi. Both HeLa and A431 cells contained a 41 kDalton substrate for the toxin which corresponds to the α; subunit of Gi. The Gi subunit was ADP-ribosylated by the toxin to a similar extent in membranes from control and drug-treated cells. Thus, the drugs appear to induce quantitative changes in β-adrenergic receptors and qualitative changes in Gi which results in a highly responsive β-adrenergic-stimulated adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号