首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to systematically assess the bifidogenic effect of three commonly used prebiotic products using in vitro cultures of infant fecal samples. Fresh stool samples collected from six term infants, each exclusively fed human milk (n = 3) or infant formula (n = 3), at 28 days of age were used as inocula. The following prebiotic products were added at concentrations applicable to infant formula: Vivinal GOS 15 (containing 28.5% galacto-oligosaccharide [GOS]) at 7.2 g/liter, Beneo HP (99.5% long-chain inulin [IN]) at 0.8 g/liter, Beneo Synergy 1 (enriched oligofructose and inulin [OF-IN]) at 4 g/liter, and a combination of Vivinal GOS 15 (7.2 g/liter) and Beneo HP (0.8 g/liter) (GOS-IN). The growth of total bacteria, Bifidobacterium, Bacteroides, Bifidobacterium longum, and Escherichia coli was quantified using specific quantitative PCR (qPCR). Bifidobacterium was also enumerated on selective Beerens agar plates, with representative colonies identified by sequencing of their 16S rRNA genes. Volatile fatty acids (VFA) and pH in the cultures were also determined. Irrespective of the feeding methods, the GOS product, either alone or in combination with Beneo HP, resulted in substantially higher growth of total bifidobacteria, and much of this growth was attributed to growth of B. longum. Beneo Synergy 1 also increased the abundance of total bifidobacteria and B. longum. Corresponding to the increases in these two bacterial groups, acetic acid concentrations were higher, while there was a trend of lower E. coli levels and pH. The lower pH and higher acetic acid concentration might be directly responsible for the lower E. coli population. At the concentrations studied, the GOS product was more bifidogenic and potent in inhibiting E. coli than the other products tested. These results suggest that supplementation of infant formula with GOS may increase intestinal bifidobacteria and benefit infant health.  相似文献   

2.

Background

The Human Microbiome Project (HMP) is one of the U.S. National Institutes of Health Roadmap for Medical Research. Primary interests of the HMP include the distinctiveness of different gut microbiomes, the factors influencing microbiome diversity, and the functional redundancies of the members of human microbiotas. In this present work, we contribute to these interests by characterizing two extinct human microbiotas.

Methodology/Principal Findings

We examine two paleofecal samples originating from cave deposits in Durango Mexico and dating to approximately 1300 years ago. Contamination control is a serious issue in ancient DNA research; we use a novel approach to control contamination. After we determined that each sample originated from a different human, we generated 45 thousand shotgun DNA sequencing reads. The phylotyping and functional analysis of these reads reveals a signature consistent with the modern gut ecology. Interestingly, inter-individual variability for phenotypes but not functional pathways was observed. The two ancient samples have more similar functional profiles to each other than to a recently published profile for modern humans. This similarity could not be explained by a chance sampling of the databases.

Conclusions/Significance

We conduct a phylotyping and functional analysis of ancient human microbiomes, while providing novel methods to control for DNA contamination and novel hypotheses about past microbiome biogeography. We postulate that natural selection has more of an influence on microbiome functional profiles than it does on the species represented in the microbial ecology. We propose that human microbiomes were more geographically structured during pre-Columbian times than today.  相似文献   

3.
4.
Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts.  相似文献   

5.
6.
7.
8.
Mummies, Disease and Ancient Cultures. Aidan Cockburn. Eve Cockburn. and Theodore A. Reyman. eds. 2nd edition. Cambridge: Cambridge University Press, 1998. 402 pp.  相似文献   

9.
10.
Despite the extensive consideration the notion of informed consent has heralded in recent decades, the unique considerations pertaining to the giving of informed consent by and on behalf of Indigenous Australians have not been comprehensively explored; to the contrary, these issues have been scarcely considered in the literature to date. This deficit is concerning, given that a fundamental premise of the doctrine of informed consent is that of individual autonomy, which, while privileged as a core value of non-Indigenous Australian culture, is displaced in Indigenous cultures by the honouring of the family unit and community group, rather than the individual, as being at the core of important decision-making processes relating to the person. To address the hiatus in the bioethical literature on issues relating to informed consent for Aboriginal peoples, the following article provides findings from a two-year research project, funded by Australia’s National Health and Medical Research Council (NHMRC), conducted in the Northern Territory. The findings, situated in the context of the literature on cultural safety, highlight the difference between the Aboriginal and biomedical perspectives on informed consent.  相似文献   

11.
We compared fecal samples with samples collected with rectoanal mucosa swabs (RAMS) to determine the prevalence of Escherichia coli O157 in feedlot cattle (n = 747). Escherichia coli O157 was detected in 9.5% of samples collected with RAMS and 4.7% of samples tested by fecal culture. Pulsed-field gel electrophoresis analysis of isolates suggested that the strains colonizing the rectoanal junction were the same as those from the feces. Mucosal swab sampling was more sensitive than fecal sampling for determining the prevalence of E.coli O157 in feedlot cattle.  相似文献   

12.
The utilization of fructooligosaccharides (FOS) and inulin by 55 Bifidobacterium strains was investigated. Whereas FOS were fermented by most strains, only eight grew when inulin was used as the carbon source. Residual carbohydrates were analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection after batch fermentation. A strain-dependent capability to degrade fructans of different lengths was observed. During batch fermentation on inulin, the short fructans disappeared first, and then the longer ones were gradually consumed. However, growth occurred through a single uninterrupted exponential phase without exhibiting polyauxic behavior in relation to the chain length. Cellular β-fructofuranosidases were found in all of the 21 Bifidobacterium strains tested. Four strains were tested for extracellular hydrolytic activity against fructans, and only the two strains which ferment inulin showed this activity. Batch cultures inoculated with human fecal slurries confirmed the bifidogenic effect of both FOS and inulin and indicated that other intestinal microbial groups also grow on these carbon sources. We observed that bifidobacteria grew by cross-feeding on mono- and oligosaccharides produced by primary inulin intestinal degraders, as evidenced by the high hydrolytic activity of fecal supernatants. FOS and inulin greatly affected the production of short-chain fatty acids in fecal cultures; butyrate was the major fermentation product on inulin, whereas mostly acetate and lactate were produced on FOS.  相似文献   

13.
14.
15.
16.
17.
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
20.
Multispecies bacterial communities can be remarkably stable and resilient even though they consist of cells and species that compete for environmental resources. In silico models suggest that common signals released into the environment may help selected bacterial species cluster at common locations and that sharing of public goods (i.e. molecules produced and released for mutual benefit) can stabilize this coexistence. In contrast, unilateral eavesdropping on signals produced by a potentially invading species may protect a community by keeping invaders away from limited resources. Shared bacterial signals, such as those found in quorum sensing systems, may thus play a key role in fine tuning competition and cooperation within multi-bacterial communities. We suggest that in addition to metabolic complementarity, signaling dynamics may be important in further understanding complex bacterial communities such as the human, animal as well as plant microbiomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号