首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lower skeletal muscle mitochondrial oxidative phosphorylation capacity (OXPHOS) and intramyocellular lipid (IMCL) accumulation have been implicated in the etiology of insulin resistance (IR) in obesity. The purpose of this study was to examine the impact of endurance exercise on biochemical and morphological measures of IMCL and mitochondrial content, and their relationship to IR in obese individuals. We examined mitochondrial content (subunit protein abundance and maximal activity of electron transport chain enzymes), IMCL/mitochondrial morphology in both subsarcolemmal (SS) and intermyofibrillar (IMF) regions by transmission electron microscopy, and intracellular lipid metabolites (diacylglycerol and ceramide) in vastus lateralis biopsies, as well as, the homeostasis model assessment index of IR (HOMA-IR) prior to and following twelve weeks of an endurance exercise regimen in healthy age- and physical activity-matched lean and obese men. Obese men did not show evidence of mitochondrial OXPHOS dysfunction, disproportionate IMCL content in sub-cellular regions, or diacylglycerol/ceramide accretion despite marked IR vs. lean controls. Endurance exercise increased OXPHOS and mitochondrial size and density, but not number of individual mitochondrial fragments, with moderate improvements in HOMA-IR. Exercise reduced SS IMCL content (size, number and density), increased IMF IMCL content, while increasing IMCL/mitochondrial juxtaposition in both regions. HOMA-IR was inversely associated with SS (r = −0.34; P = 0.051) and IMF mitochondrial density (r = −0.29; P = 0.096), IMF IMCL/mitochondrial juxtaposition (r = −0.30; P = 0.086), and COXII (r = −0.32; P = 0.095) and COXIV protein abundance (r = −0.35; P = 0.052); while positively associated with SS IMCL size (r = 0.28; P = 0.119) and SS IMCL density (r = 0.25; P = 0.152). Our findings suggest that once physical activity and cardiorespiratory fitness have been controlled for, skeletal muscle mitochondrial and IMCL profile in obesity may only partially contribute to the development of IR.  相似文献   

2.

Background

Fibroblast growth factor 19 (FGF19) and FGF21 are considered to be novel adipokines that improve glucose tolerance and insulin sensitivity. In the current study, we investigated serum FGF19 and FGF21 levels in patients with gestational diabetes mellitus (GDM) and explored their relationships with anthropometric and endocrine parameters.

Method

Serum FGF19 and FGF21 levels were determined by enzyme-linked immunosorbent assay (ELISA) in patients with GDM (n = 30) and healthy pregnant controls (n = 60) matched for maternal and gestational age. Serum FGF19 and FGF21 levels were correlated with anthropometric, metabolic, and endocrine parameters.

Results

Circulating levels of FGF19 were significantly reduced in patients with GDM relative to healthy pregnant subjects, whereas FGF21 levels were increased in GDM patients. Serum FGF19 levels independently and inversely correlated with insulin resistance (increased homeostasis model assessment of insulin resistance, HOMA-IR) and were positively related to serum adiponectin in both groups. In contrast, serum FGF21 levels independently and positively correlated with insulin resistance and serum triglycerides and were inversely related to serum adiponectin. In addition, in the combined population of both groups, those women with preconception polycystic ovary syndrome (PCOS) history had the lowest levels of FGF19, which were significantly lower than those in GDM patients without PCOS history and those in controls without PCOS history.

Conclusions

Circulating FGF19 levels are reduced in GDM patients, in contrast with FGF21 levels. Both serum FGF19 and FGF21 levels are strongly related to insulin resistance and serum levels of adiponectin. Considering the different situation between FGF19 and FGF21, we suggest that reduced serum FGF19 levels could be involved in the pathophysiology of GDM, while increased serum FGF21 levels could be in a compensatory response to this disease.  相似文献   

3.

Background

The increasing prevalence of obesity in pregnant women is associated with adverse maternal and neonatal outcomes, and increased costs to healthcare, the economy and broader society.

Objectives

To assess the efficacy of behavioural interventions for managing gestational weight gain (GWG) in the pre-conceptual and pregnancy period in overweight, obese and morbidly obese women.

Search Methods

A search was performed for published studies in the English language, from date? 2000–31 December 2012 in five electronic databases; PubMed, Scopus, Cochrane Library, CINAHL and PsycINFO.

Selection criteria

Studies were included if they compared the efficacy or effectiveness of a particular behavioural intervention in pregnant or pre-conceptual women with standard maternity care. Studies that included women with co-morbid conditions such as diabetes mellitus and polycystic ovarian syndrome were excluded to help isolate the effect of the intervention.

Results

Fifteen studies involving 3,426 participants were included. One study (n = 692) focused on the pre-conceptual period and the remaining 14 (n = 2,734) in the pregnancy period. Pooled mean difference for GWG indicated a lower GWG in the intervention groups when compared to standard maternity care groups (n = 1771, mean difference (MD) −1.66 kg, 95% CI −3.12 to −0.21 kg). With respect to the types of participants, considerable heterogeneity between studies was shown in the obese subgroup [Tau2 = 15.61; Chi2 = 40.80, df = 3 (P<0.00001); I2 = 93%].

Conclusions

Behavioural interventions in pregnancy may be effective in reducing GWG in obese women without comorbid conditions, but not overweight or morbidly obese women. Behavioural interventions had no effect on postpartum weight loss or retention, gestation week of delivery and infant birth weight in overweight, obese and morbidly obese women.  相似文献   

4.
Gestational diabetes mellitus (GDM) is an important complication of pregnancy that poses significant threats to women and their offspring. Telomere length shortens as cellular damage increases and is associated with metabolic diseases. Telomere length in fetal leucocytes was determined in 82 infants of women with GDM (N = 82) and 65 normal pregnant women (N = 65). Women with preeclampsia (N = 45) and gestational hypertension (N = 23) were also studied. In the GDM group, telomere length was significantly shorter than normal pregnancy (P = 0.028), but there were no significant differences in fetal telomere length between preeclampsia and normal pregnancy (P = 0.841) and between gestational hypertension and normal pregnancy (P = 0.561). Regression analysis revealed that fetal telomere length was significantly associated with intrauterine exposure to GDM (P = 0.027 after adjustment for maternal age, gestational age at delivery, birth weight and fetal gender). Shortened telomere length may increase the risk of metabolic diseases in adulthood of GDM offspring.  相似文献   

5.
Menopause is associated with an increased incidence of insulin resistance and metabolic diseases. In a chronic palmitate treatment model, we investigated the role of skeletal muscle fatty acid exposure in relation to the metabolic deterioration observed with menopause. Human skeletal muscle satellite cells were isolated from premenopausal (n = 6) and postmenopausal (n = 5) women. In an in vitro model, the myotubes were treated with palmitate (300 µM) for one-, two- or three days during differentiation. Effects on lipid accumulation, inflammation and insulin signaling were studied. Palmitate treatment led to a 108% (CI 95%: 50%; 267%) increase in intramyocellular ceramide in the myotubes from the postmenopausal women (post-myotubes) compared with a 26% (CI 95%: −57%; 96%) increase in myotubes from the premenopausal women (pre-myotubes), (p<0.05). Furthermore, post-myotubes had a 22% (CI 95%: 4%; 34%) increase in pJNK (p = 0.04) and a 114% (CI 95%: 50%; 177%) increase in Hsp70 protein expression (p = 0.03) after three days of palmitate treatment, compared with pre-myotubes, in which no increase in either pJNK (−12% (CI 95: −26%; 2%)) or Hsp70 (7% (CI 95: −78%; 91%)) was detected. Furthermore, post-myotubes showed a blunted insulin stimulated phosphorylation of AS160 in response to chronic palmitate treatment compared with pre-myotubes (p = 0.02). The increased intramyocellular ceramide content in the post-myotubes was associated with a significantly higher mRNA expression of Serine Palmitoyltransferase1 (SPT1) after one day of palmitate treatment (p = 0.03) in post-myotubes compared with pre-myotubes. Our findings indicate that post-myotubes are more prone to develop lipid accumulation and defective insulin signaling following chronic saturated fatty acid exposure as compared to pre-myotubes.  相似文献   

6.

Context

The Activin A-Follistatin system has emerged as an important regulator of lipid and glucose metabolism with possible repercussions on fetal growth.

Objective

To analyze circulating activin A, follistatin and follistatin-like-3 (FSTL3) levels and their relationship with glucose metabolism in pregnant women and their influence on fetal growth and neonatal adiposity.

Design and methods

A prospective cohort was studied comprising 207 pregnant women, 129 with normal glucose tolerance (NGT) and 78 with gestational diabetes mellitus (GDM) and their offspring. Activin A, follistatin and FSTL3 levels were measured in maternal serum collected in the early third trimester of pregnancy. Serial fetal ultrasounds were performed during the third trimester to evaluate fetal growth. Neonatal anthropometry was measured to assess neonatal adiposity.

Results

Serum follistatin levels were significantly lower in GDM than in NGT pregnant women (8.21±2.32 ng/mL vs 9.22±3.41, P = 0.012) whereas serum FSTL3 and activin A levels were comparable between the two groups. Serum follistatin concentrations were negatively correlated with HOMA-IR and positively with ultrasound growth parameters such as fractional thigh volume estimation in the middle of the third trimester and percent fat mass at birth. Also, in the stepwise multiple linear regression analysis serum follistatin levels were negatively associated with HOMA-IR (β = −0.199, P = 0.008) and the diagnosis of gestational diabetes (β = −0.138, P = 0.049). Likewise, fractional thigh volume estimation in the middle of third trimester and percent fat mass at birth were positively determined by serum follistatin levels (β = 0.214, P = 0.005 and β = 0.231, P = 0.002, respectively).

Conclusions

Circulating follistatin levels are reduced in GDM compared with NGT pregnant women and they are positively associated with fetal growth and neonatal adiposity. These data suggest a role of the Activin-Follistatin system in maternal and fetal metabolism during pregnancy.  相似文献   

7.

Objectives

To assess the role of the health consequences of maternal overweight and obesity at the start of pregnancy on gestational pathologies, delivery and newborn characteristics.

Methods

A cohort of pregnant women (n = 6.558) having delivered at the Maternal & Child University Hospital of Gran Canaria (HUMIGC) in 2008 has been studied. Outcomes were compared using multivariate analyses controlling for confounding variables.

Results

Compared to normoweight, overweight and obese women have greater risks of gestational diabetes mellitus (RR = 2.13 (95% CI: 1.52–2.98) and (RR = 2.85 (95% CI: 2.01–4.04), gestational hypertension (RR = 2.01 (95% CI: 1.27–3.19) and (RR = 4.79 (95% CI: 3.13–7.32) and preeclampsia (RR = 3.16 (95% CI: 1.12–8.91) and (RR = 8.80 (95% CI: 3.46–22.40). Obese women have also more frequently oligodramnios (RR = 2.02 (95% CI: 1.25–3.27), polyhydramnios. (RR = 1.76 (95% CI: 1.03–2.99), tearing (RR = 1.24 (95% CI: 1.05–1.46) and a lower risk of induced deliveries (RR = 0.83 (95% CI: 0.72–0.95). Both groups have more frequently caesarean section (RR = 1.36 (95% CI: 1.14–1.63) and (RR = 1.84 (95% CI: 1.53–2.22) and manual placenta extraction (RR = 1.65 (95% CI: 1.28–2.11) and (RR = 1.77 (95% CI: 1.35–2.33). Newborns from overweight and obese women have higher weight (p<0.001) and a greater risk of being macrosomic (RR = 2.00 (95% CI: 1.56–2.56) and (RR = 2.74 (95% CI: 2.12–3.54). Finally, neonates from obese mother have a higher risk of being admitted to special care units (RR = 1.34 (95% CI: 1.01–1.77). Apgar 1 min was significantly higher in newborns from normoweight mothers: 8.65 (95% CI: 8.62–8.69) than from overweight: 8.56 (95% CI: 8.50–8.61) or obese mothers: 8.48 (95% CI: 8.41–8.54).

Conclusion

Obesity and overweight status at the beginning of pregnancy increase the adverse outcomes of the pregnancy. It is important to promote the normalization of bodyweight in those women who intend to get pregnant and to provide appropriate advice to the obese women of the risks of obesity at the start of the pregnancy.  相似文献   

8.

Background

Women with preeclampsia (PEC) and gestational hypertension (GH) exhibit insulin resistance during pregnancy, independent of obesity and glucose intolerance. Our aim was to determine whether women with PEC or GH during pregnancy have an increased risk of developing diabetes after pregnancy, and whether the presence of PEC/GH in addition to gestational diabetes (GDM) increases the risk of future (postpartum) diabetes.

Methods and Findings

We performed a population-based, retrospective cohort study for 1,010,068 pregnant women who delivered in Ontario, Canada between April 1994 and March 2008. Women were categorized as having PEC alone (n = 22,933), GH alone (n = 27,605), GDM alone (n = 30,852), GDM+PEC (n = 1,476), GDM+GH (n = 2,100), or none of these conditions (n = 925,102). Our main outcome was a new diagnosis of diabetes postpartum in the following years, up until March 2011, based on new records in the Ontario Diabetes Database. The incidence rate of diabetes per 1,000 person-years was 6.47 for women with PEC and 5.26 for GH compared with 2.81 in women with neither of these conditions. In the multivariable analysis, both PEC alone (hazard ratio [HR] = 2.08; 95% CI 1.97–2.19) and GH alone (HR = 1.95; 95% CI 1.83–2.07) were risk factors for subsequent diabetes. Women with GDM alone were at elevated risk of developing diabetes postpartum (HR = 12.77; 95% CI 12.44–13.10); however, the co–presence of PEC or GH in addition to GDM further elevated this risk (HR = 15.75; 95% CI 14.52–17.07, and HR = 18.49; 95% CI 17.12–19.96, respectively). Data on obesity were not available.

Conclusions

Women with PEC/GH have a 2-fold increased risk of developing diabetes when followed up to 16.5 years after pregnancy, even in the absence of GDM. The presence of PEC/GH in the setting of GDM also raised the risk of diabetes significantly beyond that seen with GDM alone. A history of PEC/GH during pregnancy should alert clinicians to the need for preventative counseling and more vigilant screening for diabetes. Please see later in the article for the Editors'' Summary  相似文献   

9.

Background

Elevated serum level of retinol-binding protein 4 (RBP4) has been associated with obesity-related co-morbidities including insulin resistance, dyslipidemia and hypertension.

Objectives

The present study examined the relationship between serum level of RBP4 and various risk factors related to cardiovascular disease (CVD) in men and women.

Methods

284 subjects (139 males, 145 females), grouped into healthy (n = 60), obese diabetes (n = 60), non-obese diabetes (n = 60), obese non-diabetes (n = 60) and patients with CVD (n = 44), were assessed for anthropometric and biochemical parameters related to obesity, diabetes and CVD. In addition, serum levels of several adipokines, including fatty acid binding protein 4 (FABP4) and lipocalin 2 (LCN2) and RBP4 were measured using specific immunoassays.

Results

Serum RBP4 level correlated significantly with principal component derived from known risk factors of CVD (β = 0.20±0.06, P = 0.002). Significance of this correlation was limited to women (β = 0.20±0.06, P = 0.002) and it persisted even after adjusting for BMI (β = 0.19±0.06, P = 0.002). Overall (n = 284) serum RBP4 values significantly correlated with FABP4 (R = 0.19, p = 0.001). Serum FABP4 level of CVD subjects was significantly higher than healthy control (P = 0.001) and non-obese diabetes (P = 0.04) groups, but this difference was attributable to differences in BMI. Serum LCN2 level correlated well with RBP4 (R = 0.15, P = 0.008) and FABP4 (R = 0.36, P<0.001), but did not differ significantly between CVD and other groups.

Conclusions

Results of this study indicate a significant correlation between serum RBP4 and various established risk factors for CVD and suggest RBP4 may serve as an independent predictor of CVD in women.  相似文献   

10.
Antioxidant supplements are widely consumed by the general public; however, their effects of on exercise performance are controversial. The aim of this study was to examine the effects of an antioxidant cocktail (α-lipoic acid, vitamin E and coenzyme Q10) on exercise performance, muscle function and training adaptations in mice. C57Bl/J6 mice were placed on antioxidant supplement or placebo-control diets (n = 36/group) and divided into trained (8 wks treadmill running) (n = 12/group) and untrained groups (n = 24/group). Antioxidant supplementation had no effect on the running performance of trained mice nor did it affect training adaptations; however, untrained female mice that received antioxidants performed significantly better than placebo-control mice (p ≤ 0.05). Furthermore, antioxidant-supplemented females (untrained) showed elevated respiratory capacity in freshly excised muscle fibers (quadriceps femoris) (p ≤ 0.05), reduced oxidative damage to muscle proteins (p ≤ 0.05), and increased expression of mitochondrial proteins (p ≤ 0.05) compared to placebo-controls. These changes were attributed to increased expression of proliferator-activated receptor gamma coactivator 1α (PGC-1α) (p ≤ 0.05) via activation of AMP-activated protein kinase (AMPK) (p ≤ 0.05) by antioxidant supplementation. Overall, these results indicate that this antioxidant supplement exerts gender specific effects; augmenting performance and mitochondrial function in untrained females, but does not attenuate training adaptations.  相似文献   

11.
12.

Background

Roux-en-Y gastric bypass (RYGB) surgery is associated with weight loss, improved insulin sensitivity and glucose homeostasis, and a reduction in co-morbidities such as diabetes and coronary heart disease. To generate further insight into the numerous metabolic adaptations associated with RYGB surgery, we profiled serum metabolites before and after gastric bypass surgery and integrated metabolite changes with clinical data.

Methodology and Principal Findings

Serum metabolites were detected by gas and liquid chromatography-coupled mass spectrometry before, and 3 and 6 months after RYGB in morbidly obese female subjects (n = 14; BMI = 46.2±1.7). Subjects showed decreases in weight-related parameters and improvements in insulin sensitivity post surgery. The abundance of 48% (83 of 172) of the measured metabolites changed significantly within the first 3 months post RYGB (p<0.05), including sphingosines, unsaturated fatty acids, and branched chain amino acids. Dividing subjects into obese (n = 9) and obese/diabetic (n = 5) groups identified 8 metabolites that differed consistently at all time points and whose serum levels changed following RYGB: asparagine, lysophosphatidylcholine (C18:2), nervonic (C24:1) acid, p-Cresol sulfate, lactate, lycopene, glucose, and mannose. Changes in the aforementioned metabolites were integrated with clinical data for body mass index (BMI) and estimates for insulin resistance (HOMA-IR). Of these, nervonic acid was significantly and negatively correlated with HOMA-IR (p = 0.001, R = −0.55).

Conclusions

Global metabolite profiling in morbidly obese subjects after RYGB has provided new information regarding the considerable metabolic alterations associated with this surgical procedure. Integrating clinical measurements with metabolomics data is capable of identifying markers that reflect the metabolic adaptations following RYGB.  相似文献   

13.
In this study we scrutinized the association between the A8344G/A3243G mutations and a 9-bp deletion polymorphism with gestational diabetes mellitus (GDM) in an Asian Indian population. The A3243G mutation in the mitochondrial tRNALeu(UUR) causes mitochondrial encephalopathy myopathy, lactic acidosis, and stroke-like episodes (MELAS), while the A8344G mutation in tRNALys causes myoclonus epilepsy with ragged red fibers (MERRF). We screened 140 pregnant women diagnosed with GDM and 140 non-GDM participants for these mutations by PCR-RFLP analysis. Both A3243G and A8344G were associated with GDM (A3243: OR-3.667, 95% CI = 1.001–13.43, = 0.03; A8344G: OR-11.00, 95% CI = 0.6026–200.8, = 0.04). Mitochondrial DNA mutations contribute to the development of GDM. Our results conclude that mitochondrial mutations are associated with the GDM women in our population. Thus it is important to screen other mitochondrial mutations in the GDM women.  相似文献   

14.
Vitamin B12, a co-factor in methyl-group transfer, is important in maintaining DNA (deoxycytidine) methylation. Using two independent assays we examined the effect of vitamin B12-deficiency (plasma vitamin B12<148 pmol/L) on DNA methylation in women of childbearing age. Coagulated blood clot DNA from vitamin B12-deficient women had significantly (p<0.001) lower percentage deoxycytidine methylation (3.23±0.66%; n = 248) and greater [3 H]methyl-acceptance (42,859±9,699 cpm; n = 17) than DNA from B12-replete women (4.44±0.18%; n = 128 and 26,049±2,814 cpm; n = 11) [correlation between assays: r = –0.8538; p<0.001; n = 28]. In contrast, uncoagulated EDTA-blood cell pellet DNA from vitamin B12-deficient and B12-replete women exhibited similar percentage methylation (4.45±0.15%; n = 77 vs. 4.47±0.15%; n = 47) and [3 H]methyl-acceptance (27,378±4,094 cpm; n = 17 vs. 26,610±2,292 cpm; n = 11). Therefore, in simultaneously collected paired blood samples, vitamin B12-deficiency was associated with decreased DNA methylation only in coagulated samples. These findings highlight the importance of sample collection methods in epigenetic studies, and the potential impact biological processes can have on DNA methylation during collection.  相似文献   

15.
Vitamin D is well known for its regulatory role in calcium and phosphate homeostasis, but its role in muscle mass and strength during growth remains inconclusive. We explored the association of serum 25-hydroxyvitamin D (25(OH)D) with muscle development in girls from 11 to 18-years old. Whole body lean tissue mass (LMWB), appendicular lean mass (aLM), muscle cross-sectional area at the lower leg (mCSA), maximal voluntary contraction of elbow flexors (MVCelbow) and knee extensors (MVCknee) were assessed in 217 girls aged 10–13 years (at baseline), 215 in 2-year and 226 in 7.5-year follow-up. Serum concentration of 25(OH)D and intact parathyroid hormone (PTH) were analyzed retrospectively and girls were categorized according to their 25(OH)D levels (consistently insufficient 25(OH)D GLL <50 nmol/l and consistently sufficient GHH >50 nmol/l from baseline to 7-year follow-up). We found that 25(OH)D level declined until menarche (p<0.05) while LMWB, aLM, mCSA, MVCelbow and MVCknee continued to increase (p<0.001 for all) post menarche. At pre-menarche, the GLL (n = 34) had higher LMWB and aLM than the GHH (n = 21, p<0.05), while post-menarche the GHH (n = 15) had a greater catch-up gain in LMWB (p = 0.004), aLM (p = 0.001) and mCSA (p = 0.027) compared to the GLL (n = 65) over the first 2-year period. At the age of 18, no differences in muscle mass/strength between the low (n = 151) and high (n = 77) levels of 25(OH)D groups were found. This finding was independent of vitamin D receptor genotype and other confounders. In conclusion, our results showed that levels of 25(OH)D have no significant negative influence on the development of muscle mass and strength during pubertal growth both with longitudinal and cross-sectional comparison. On the contrary, our results suggest that the temporary negative association between 25(OH)D and muscle mass arises as a consequence of fast growth prior to menarche, and this negative association is diminished through catch-up growth after menarche.  相似文献   

16.

Aims

Fasting plasma glucose (FPG) concentration measured at the first prenatal visit is a predictor of gestational diabetes mellitus (GDM); however, whether this test is indicative of fetal growth has not been clarified. Thus, the purpose of this study was to determine whether birth weight and birth length were related to FPG levels at the first prenatal visit.

Materials and Methods

Research samples were collected from pregnant women who took an FPG test at their first prenatal visit (10–24 gestational weeks), received regular prenatal care, and delivered in our center. FPG value, maternal pre-gravid BMI, weight gain before FPG test, before and after Oral Glucose Tolerance Test (OGTT), neonatal birthweight, birth length, Ponderal Index and birthing method were recorded for analysis. Data were analyzed by independent sample t test, Pearson correlation, and Chi-square test, followed by partial correlation or logistic regression to confirm differences. Statistical significance level was α = 0.05.

Results

2284 pregnant women, including 462 GDM and 1822 with normal glucose tolerance (NGT) were recruited for the present study. FPG concentration at the first prenatal visit was associated with neonatal birth weight (partial correlation coefficient r′ = 0.089, P<0.001) and birth length (partial correlation coefficient r′ = 0.061, P = 0.005), but not with Ponderal Index or birthing method. Maternal pre-gravid BMI was associated with FPG value (partial correlation coefficient r′ = 0.113, P<0.001). FPG concentration at the first prenatal visit (OR = 2.945, P<0.001), weight gain before OGTT test (OR = 1.039, P = 0.010), and age (OR = 1.107, P<0.001) were independent related factors of GDM.

Conclusion

Fasting plasma glucose concentration at the first prenatal visit is associated with fetal growth. Maternal pre-gravid BMI and weight gain are related to glucose metabolism.  相似文献   

17.
Recently soluble CD163 (sCD163), a cleaved form of the macrophage receptor CD163, was identified as a macrophage-specific risk-predictor for developing Type 2 Diabetes. Here, we investigate circulating levels of sCD163 in gestational diabetes mellitus (GDM). Furthermore, given the role of the placenta in the pathogenesis of GDM, we assessed placental contribution to sCD163 secretion. Paired maternal (venous) and umbilical vein blood samples from GDM (n = 18) and Body Mass Index (BMI) matched control women (n = 20) delivered by caesarean section at 39–40 week gestation were assessed for circulating levels of sCD163, Tumour necrosis factor alpha (TNF-α) and Interleukin 6 (IL-6). Media from explant culture of maternal subcutaneous fat and corresponding placental tissues were assayed for these same molecules. CD163 positive cell numbers were determined in placental and adipose tissues of GDM and control women. We found significantly elevated circulating sCD163 levels in GDM mothers (688.4±46.9 ng/ml vs. 505.6±38.6 ng/ml) and their offspring (418.2±26.6 ng/ml vs. 336.3±24.4 ng/ml [p<0.05 for both]) as compared to controls, together with elevated circulating TNF-α and IL-6 levels. Moreover, both GDM placentae (268.1±10.8 ng/ml/mg vs. 187.6±20.6 ng/ml/mg) and adipose explants (41.1±2.7 ng/ml/mg vs. 26.6±2.4 ng/ml/mg) released significantly more sCD163 than controls. Lastly, significantly more CD163 positive cells were observed in GDM placentae (25.7±1.1 vs. 22.1±1.2) and adipose tissue (19.1±1.1 vs 12.7±0.9) compared to controls. We describe elevated sCD163 levels in GDM and identify human placenta as a novel source of sCD163 suggesting that placental tissues might contribute to the increased levels of circulating sCD163 in GDM pregnancies.  相似文献   

18.

Background

Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression.

Methodology/Principal Findings

Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least ±2-fold significantly changed expression (55 increased, 50 decreased), and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism) (P = 0.037, n = 2 genes, fold change 4.2 to 27.5) and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change −2.0 to −8.5). Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4), oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0), and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3). Other downregulated gene groups were extracellular region (including extracellular matrix and collagen) (P = 0.00032, n = 13, fold change −2.2 to −3.7) and organogenesis (P = 0.032, n = 7, fold change −2.1 to −3.7). Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested.

Conclusions/Significance

These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in carbohydrate and lipid metabolism may change the availability of energetic substrates and thereby directly modulate fatigue resistance, an important issue for a muscle like the diaphragm which needs to contract without rest for the entire lifetime of the organism.  相似文献   

19.

Objective

The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM.

Measurements

Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively.

Results

Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively). Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM.

Conclusions

Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.  相似文献   

20.
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号