首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Rationale

Neuromuscular electrical stimulation (NMES) of the lower limbs is an emerging training strategy in patients with COPD. The efficacy of this technique is related to the intensity of the stimulation that is applied during the training sessions. However, little is known about tolerance to stimulation current intensity and physiological factors that could determine it. Our goal was to find potential physiological predictors of the tolerance to increasing NMES stimulation intensity in patients with mild to severe COPD.

Methods

20 patients with COPD (FEV1 = 54±14% pred.) completed 2 supervised NMES sessions followed by 5 self-directed sessions at home and one final supervised session. NMES was applied simultaneously to both quadriceps for 45 minutes, at a stimulation frequency of 50 Hz. Spirometry, body composition, muscle function and aerobic capacity were assessed at baseline. Cardiorespiratory responses, leg discomfort, muscle fatigue and markers of systemic inflammation were assessed during or after the last NMES session. Tolerance to NMES was quantified as the increase in current intensity from the initial to the final NMES session (ΔInt).

Results

Mean ΔInt was 12±10 mA. FEV1, fat-free-mass, quadriceps strength, aerobic capacity and leg discomfort during the last NMES session positively correlated with ΔInt (r = 0.42 to 0.64, all p≤0.06) while post/pre NMES IL-6 ratio negatively correlated with ΔInt (r = −0.57, p = 0.001). FEV1, leg discomfort during last NMES session and post/pre IL-6 ratio to NMES were independent factors of variance in ΔInt (r2 = 0.72, p = 0.001).

Conclusion

Lower tolerance to NMES was associated with increasing airflow obstruction, low tolerance to leg discomfort during NMES and the magnitude of the IL-6 response after NMES.

Trial Registration

ClinicalTrials.gov NCT00809120  相似文献   

2.
To establish whether very high-volume, high-intensity isometric exercise causes stress to the body and how it affects peripheral and central fatigue. Nineteen physically active healthy male subjects (21.2 ± 1.7 years; height – 1.82 ± 0.41 m, body weight – 79.9 ± 4.5 kg; body mass index – 24.3 ± 2.1 kg/m2) volunteered to participate in this study. They participated in two experiments 3–5 days apart. Each experiment comprised six series of 60-s maximum voluntary contraction (MVC) force (knee extension) achieved as rapidly as possible. This very high-volume, high-intensity exercise (HVHIE) was performed at different quadriceps muscle lengths: short (SL) and long (LL). The MVC and the electrically stimulated contractile properties of the muscle were measured prior to HVHIE, immediately after and 3 min after each series, and at 3, 10, and 30 min after the end of HVHIE. We found that HVHIE caused high levels of stress (cortisol levels approximately doubled, heart rate and the root mean square successive difference of interval (RMSSD) decreased by about 75%); lactate increased to 8–11 mmol/L, voluntary and 100 Hz stimulation-induced force (recorded immediately after HVHIE) decreased by 55% at LL and 40% at SL. However, the central activation ratio during MVC did not change after either exercise. Isometric HVHIE performed using one leg caused high levels of stress (RMSSD decreased, cortisol increased after HVHIE equally at SL and LL; La increased more while exercising at LL) and the voluntary and electrostimulation-induced muscle force significantly decreased, but muscle central activation during MVC did not decrease.  相似文献   

3.
We disrupted the gene encoding lysophosphatidylinositol-acyltransferase-1 (LPIAT1) in the mouse with the aim of understanding its role in determining cellular phosphoinositide content. LPIAT1−/− mice were born at lower than Mendelian ratios and exhibited a severe developmental brain defect. We compared the phospholipid content of livers and brains from LPIAT1−/− and LPIAT1+/+ littermates by LC-ESI/MS. In accord with previous studies, the most abundant molecular species of each phosphoinositide class (PtdIns, PtdInsP, PtdInsP2 and PtdInsP3) possessed a C38∶4 complement of fatty-acyl esters (C18∶0 and C20∶4 are usually assigned to the sn-1 and sn-2 positions, respectively). LPIAT1−/− liver and brain contained relatively less of the C38∶4 species of PtdIns, PtdInsP and PtdInsP2 (dropping from 95–97% to 75–85% of the total species measured for each lipid class) and relatively more of the less abundant species (PtdInsP3 less abundant species were below our quantification levels). The increases in the less abundant PtdIns and PtdInsP2 species did not compensate for the loss in C38∶4 species, resulting in a 26–44% reduction in total PtdIns and PtdInsP2 levels in both brain and liver. LPIAT1−/− brain and liver also contained increased levels of C18∶0 lyso-PtdIns (300% and 525% respectively) indicating a defect in the reacylation of this molecule. LPIAT1−/− brain additionally contained significantly reduced C38∶4 PC and PE levels (by 47% and 55% respectively), possibly contributing to the phenotype in this organ. The levels of all other molecular species of PC, PE, PS and PA measured in the brain and liver were very similar between LPIAT1−/− and LPIAT1+/+ samples. These results suggest LPIAT1 activity plays a non-redundant role in maintaining physiological levels of PtdIns within an active deacylation/reacylation cycle in mouse tissues. They also suggest that this pathway must act in concert with other, as yet unidentified, mechanisms to achieve the enrichment observed in C38∶4 molecular species of phosphoinositides.  相似文献   

4.
This study compared fatigue development of the triceps surae induced by two electrical stimulation protocols composed of constant and variable frequency trains (CFTs, VFTs, 450 trains, 30 Hz, 167 ms ON, 500 ms OFF and 146 ms ON, 500 ms OFF respectively). For the VFTs protocol a doublet (100 Hz) was used at the beginning of each train. The intensity used evoked 30% of a maximal voluntary contraction (MVC) and was defined using CFTs. Neuromuscular tests were performed before and after each protocol. Changes in excitation-contraction coupling were assessed by analysing the M-wave [at rest (Mmax) and during MVC (Msup)] and associated peak twitch (Pt). H-reflex [at rest (Hmax) and during MVC (Hsup)] and the motor evoked potential (MEP) during MVC were studied to assess spinal and corticospinal excitability of the soleus muscle. MVC decrease was similar between the protocols (−8%, P<0.05). Mmax, Msup and Pt decreased after both protocols (P<0.01). Hmax/Mmax was decreased (P<0.05), whereas Hsup/Msup and MEP/Msup remained unchanged after both protocols. The results indicate that CFTs and VFTs gave rise to equivalent neuromuscular fatigue. This fatigue resulted from alterations taking place at the muscular level. The finding that cortical and spinal excitability remained unchanged during MVC indicates that spinal and/or supraspinal mechanisms were activated to compensate for the loss of spinal excitability at rest.  相似文献   

5.
TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed DbαEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL) and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of DbαEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward DbαEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of DbαEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing DbαEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects DbαEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-RasG12V. In the presence of doxycycline, these cells showed increased resistance to DbαEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the DbαEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between DbαEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that DbαEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.  相似文献   

6.
Nine men [24.6 (SEM 1.1) years] carried out isometric contractions (IC) of the right elbow flexors at 50% and 100% of the maximal voluntary contraction (MVC). At 50% MVC they had to maintain IC until the limit time (isotonic IC: IIC50 and beyond for as long as possible (anisotonic IC: AIC50). At 100% MVC, IC was anisotonic since the decrease in force was immediate (AIC100). Measurements of the force, the integrated electromyogram (iEMG) and the heart rate (f c) were made during the entire period of contraction. There was a linear relationship between the iEMG increase and thef c increase for IIC50 and AIC100. This relationship was not found for AIC50. The role played by the peripheral information would seem to have become more important inf c regulation when the isotonic IC preceding the anisotonic IC was sufficiently long (submaximal IIC). It would seem that the idea of muscle exhaustion at the limit time was only relative, and depended greatly on the subject's motivation and his capacity to endure a certain degree of pain.  相似文献   

7.
To determine the external force that induces maximal deoxygenation of brachioradialis muscle 32 trained male subjects maintained isometric contractions using the elbow flexor muscles up to the limit time (isotonic part of the isometric contraction, IIC) and beyond that time for 120 s (anisotonic part of the isometric contraction). During IIC each subject maintained relative forces of either 25% and 70% maximal voluntary contraction (MVC), 50% and 100% MVC, or 40% and 60% MVC. Muscle oxygenation was assessed using a near infrared spectroscope, and expressed as a percentage of the reference value (ΔO2rest) which was the difference between the minimal oxygenation obtained after 6 min of ischaemia at rest and the maximal reoxygenation following the release of the tourniquet. During IIC at 25% MVC, muscle oxygenation decreased to 17 (SEM 3)% ΔO2rest, then it levelled off [25 (SEM 1)% ΔO2rest]. After the point at which target force could not be maintained, reoxygenation was very weak. During IIC at 40%, 50%, 60%, and 70% MVC, the lowest muscle oxygenation values were obtained after 15–20 s of contraction and corresponded to −18 (SEM 6), −59 (SEM 12) −31 (SEM 6), and −29 (SEM 6)% ΔO2rest, respectively. For the contraction at 100% MVC, the lowest oxygenation [−19 (SEM 9)% ΔO2rest] was obtained while force was decreasing (69% MVC). During the anisotonic part of the isometric contractions, the greatest reoxygenation rate was obtained after 50% MVC IIC (P < 0.001). Our results showed that during isometric elbow flexions between 25% and 100% MVC, there was no linear relationship between external force and muscle oxygenation, and that the maximal deoxygenation of the brachioradialis muscle was obtained at 50% MVC. Accepted: 16 February 1998  相似文献   

8.
Motor evoked potentials (MEP) and cervicomedullary evoked potentials (CMEP) may help determine the corticospinal adaptations underlying chronic resistance training-induced increases in voluntary force production. The purpose of the study was to determine the effect of chronic resistance training on corticospinal excitability (CE) of the biceps brachii during elbow flexion contractions at various intensities and the CNS site (i.e. supraspinal or spinal) predominantly responsible for any training-induced differences in CE. Fifteen male subjects were divided into two groups: 1) chronic resistance-trained (RT), (n = 8) and 2) non-RT, (n = 7). Each group performed four sets of ∼5 s elbow flexion contractions of the dominant arm at 10 target forces (from 10%–100% MVC). During each contraction, subjects received 1) transcranial magnetic stimulation, 2) transmastoid electrical stimulation and 3) brachial plexus electrical stimulation, to determine MEP, CMEP and compound muscle action potential (Mmax) amplitudes, respectively, of the biceps brachii. All MEP and CMEP amplitudes were normalized to Mmax. MEP amplitudes were similar in both groups up to 50% MVC, however, beyond 50% MVC, MEP amplitudes were lower in the chronic RT group (p<0.05). CMEP amplitudes recorded from 10–100% MVC were similar for both groups. The ratio of MEP amplitude/absolute force and CMEP amplitude/absolute force were reduced (p<0.012) at all contraction intensities from 10–100% MVC in the chronic-RT compared to the non-RT group. In conclusion, chronic resistance training alters supraspinal and spinal excitability. However, adaptations in the spinal cord (i.e. motoneurone) seem to have a greater influence on the altered CE.  相似文献   

9.
It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n = 10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6 s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.  相似文献   

10.
This study investigated cardiovascular responses to 2 min sustained submaximal (20% MVC) and maximal (100% MVC) voluntary isometric contractions of the finger flexors in healthy young women. Cardiovascular variables investigated were: heart rate (f c), mean arterial pressure ( a), and stroke volume (SV). Doppler echocardiography was used to estimate SV from measures of aortic diameter (AD) and time-velocity integrals. Preliminary studies indicated that AD did not change significantly after 2 min sustained 100% MVC. Therefore, pre-exercise AD values were used to calculate SV before, during and after exercise. During the 2-min 100% MVC period, f c and aincreased significantly during the first 30 s of contraction. f c then remained constant during the remainder of the 2-min contraction period, while acontinued to rise. SV did not change significantly during the 100% MVC task but increased significantly during recovery from sustained 100% MVC. The data suggest that the magnitude of cardiovascular responses to isometric exercise is dependent on the specific task performed, and that there is a different pattern of response for f c, a, and SV during 20% and 100% MVC tasks. Unlike f c and a, SV did not change significantly during isometric exercise, but increased significantly after sustained 100% MVC.  相似文献   

11.
A group of 14-healthy men performed anisotonic isometric contractions (AIC), for 60 s, at an intensity of 100% maximal voluntary contraction force (MVC) during handgrip (HG) and leg extension (LE). Heart rate (f c), stroke volume index (SVI) and cardiac output index (QcI) were measured during the last 10 s of both AIC by an impedance reography method. Force (F) exerted by the subjects was recorded continuously and reported as a relative force (F r) (% MVC). The F generated during MVC was greater for LE than for HG (502.I N compared to 374.6 N, P < 0.001). The rate of decrease in F r was significantly slower for LE than HG for the first 25 s of the exercise (phase 1 of AIC). The F r developed by the subjects at the end of AIC was 40% MVC for both LE and HG. The increase in f c was greater for LE (63 beats · min–1) than for HG (52 beats · min–1), P < 0.01. The SVI decreased significantly from the resting level by 17.0 ml · m–2 and by 18.2 ml · m–2 for LE and HG, respectively. The QcI increased insignificantly for HG by 0.091 · min–1 · m–2 andsignificantly forLE by 0.561 · min–1 · m–2 (P < 0.001). It was concluded that although both AIC caused a significant decrease in SVI, greater increases in f c and Qc were observed for LE than for HG. The greater f c and Qc reported during LE was probably related to the greater relative force exerted by LE during phase 1 of AIC. It seems, therefore that central command might have dominated for phase 1 of AIC but that the muscle reflex also contributed significantly to the control of the cardiac response to the high intensity AIC.  相似文献   

12.
The CeO2 NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO2 NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L−1 CeO2 exposures for 48 h. Acute toxicity bioassays were performed to determine EC50 of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO2 NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO2 NPs than D. pulex, showing 48-h EC50 of 0.26 mg.L−1 and 91.79 mg.L−1, respectively. Both species interacted with CeO2 NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO2 NPs for both species. A 48-h exposure to 1 mg.L−1 induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L−1 and 100 mg.L−1) than the one of D. pulex. These interspecific toxic effects of CeO2 NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO2 aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO2 NPs exposure in daphnids are discussed.  相似文献   

13.
We performed a case-control study in 2,555 multiple sclerosis (MS) Sardinian patients and 1,365 healthy ethnically matched controls, analyzing the interactions between HLA-DRB1-DQB1 haplotypes and defining a rank of genotypes conferring a variable degree of risk to the disease. Four haplotypes were found to confer susceptibility (*13∶03-*03∶01 OR = 3.3, Pc 5.1×10−5, *04∶05-*03∶01 OR = 2.1, Pc 9.7×10−8, *15∶01-*06∶02 OR = 2.0, Pc = 9.1×10−3, *03∶01-*02∶01 OR = 1.7 Pc = 7.9×10−22) and protection (*11, OR = 0.8, Pc = 2.7×10−2, *16∶01-*05∶02 OR = 0.6, Pc = 4.8×10−16, *14∶01-4-*05∶031 = OR = 0.5, Pc = 9.8×10−4 and *15∶02-*06∶01 OR = 0.4, Pc = 5.1×10−4). The relative predispositional effect method confirms all the positively associated haplotypes and showed that also *08 and *04 haplotypes confers susceptibility, while the *11 was excluded as protective haplotype. Genotypic ORs highlighted two typologies of interaction between haplotypes: i) a neutral interaction, in which the global risk is coherent with the sum of the single haplotype risks; ii) a negative interaction, in which the genotypic OR observed is lower than the sum of the OR of the two haplotypes. The phylogenic tree of the MS-associated DRB1 alleles found in Sardinian patients revealed a cluster represented by *14∶01, *04∶05, *13∶03, *08∶01 and *03∶01 alleles. Sequence alignment analysis showed that amino acids near pocket P4 and pocket P9 differentiated protective from predisposing alleles under investigation. Furthermore, molecular dynamics simulation performed on alleles revealed that position 70 is crucial in binding of MBP 85–99 peptide. All together, these data suggest that propensity to MS observed in Sardinian population carried by the various HLA-DRB1-DQB1 molecules can be due to functional peculiarity in the antigen presentation mechanisms.  相似文献   

14.
The addition of 20 mM MoO42− (molybdate) to a reduced marine sediment completely inhibited the SO42− reduction activity by about 50 nmol g−1 h−1 (wet sediment). Acetate accumulated at a constant rate of about 25 nmol g−1 h−1 immediately after MoO42− addition and gave a measure of the preceding utilization rate of acetate by the SO42−-reducing bacteria. Similarly, propionate and butyrate (including isobutyrate) accumulated at constant rates of 3 to 7 and 2 to 4 nmol g−1 h−1, respectively. The rate of H2 accumulation was variable, and a range of 0 to 16 nmol g−1 h−1 was recorded. An immediate increase of the methanogenic activity by 2 to 3 nmol g−1 h−1 was apparently due to a release of the competition for H2 by the absence of SO42− reduction. If propionate and butyrate were completely oxidized by the SO42−-reducing bacteria, the stoichiometry of the reactions would indicate that H2, acetate, propionate, and butyrate account for 5 to 10, 40 to 50, 10 to 20, and 10 to 20%, respectively, of the electron donors for the SO42−-reducing bacteria. If the oxidations were incomplete, however, the contributions by propionate and butyrate would only be 5 to 10% each, and the acetate could account for as much as two-thirds of the SO42− reduction. The presence of MoO42− seemed not to affect the fermentative and methanogenic activities; an MoO42− inhibition technique seems promising in the search for the natural substrates of SO42− reduction in sediments.  相似文献   

15.
Human type 1 diabetes is an autoimmune disease that results from the autoreactive destruction of pancreatic β cells by T cells. Antigen presenting cells including dendritic cells and macrophages are required to activate and suppress antigen-specific T cells. It has been suggested that antigen uptake from live cells by dendritic cells via scavenger receptor class A (SR-A) may be important. However, the role of SR-A in autoimmune disease is unknown. In this study, SR-A−/− nonobese diabetic (NOD) mice showed significant attenuation of insulitis, lower levels of insulin autoantibodies, and suppression of diabetes development compared with NOD mice. We also found that diabetes progression in SR-A−/− NOD mice treated with low-dose polyinosinic-polycytidylic acid (poly(I∶C)) was significantly accelerated compared with that in disease-resistant NOD mice treated with low-dose poly(I∶C). In addition, injection of high-dose poly(I∶C) to mimic an acute RNA virus infection significantly accelerated diabetes development in young SR-A−/− NOD mice compared with untreated SR-A−/− NOD mice. Pathogenic cells including CD4+CD25+ activated T cells were increased more in SR-A−/− NOD mice treated with poly(I∶C) than in untreated SR-A−/− NOD mice. These results suggested that viral infection might accelerate diabetes development even in diabetes-resistant subjects. In conclusion, our studies demonstrated that diabetes progression was suppressed in SR-A−/− NOD mice and that acceleration of diabetes development could be induced in young mice by poly(I∶C) treatment even in SR-A−/− NOD mice. These results suggest that SR-A on antigen presenting cells such as dendritic cells may play an unfavorable role in the steady state and a protective role in a mild infection. Our findings imply that SR-A may be an important target for improving therapeutic strategies for type 1 diabetes.  相似文献   

16.
17.
CoxD of the α-proteobacterium Oligotropha carboxidovorans is a membrane protein which is involved in the posttranslational biosynthesis of the [CuSMoO2] cluster in the active site of the enzyme CO dehydrogenase. The bacteria synthesize CoxD only in the presence of CO. Recombinant CoxD produced in E. coli K38 pGP1-2/pETMW2 appeared in inclusion bodies from where it was solubilized by urea and refolded by stepwise dilution. Circular dichroism spectroscopy revealed the presence of secondary structural elements in refolded CoxD. CoxD is a P-loop ATPase of the AAA-protein family. Refolded CoxD catalyzed the hydrolysis of MgATP yielding MgADP and inorganic phosphate at a 1∶1∶1 molar ratio. The reaction was inhibited by the slow hydrolysable MgATP-γ-S. GTPase activity of CoxD did not exceed 2% of the ATPase activity. Employing different methods (non linear regression, Hanes and Woolf, Lineweaver-Burk), preparations of CoxD revealed a mean KM value of 0.69±0.14 mM ATP and an apparent Vmax value of 19.3±2.3 nmol ATP hydrolyzed min−1 mg−1. Sucrose density gradient centrifugation and gel filtration showed that refolded CoxD can exist in various multimeric states (2-mer, 4-mer or 6-mer), preferentially as hexamer or dimer. Within weeks the hexamer dissociates into the dimer, a process which can be reversed by MgATP or MgATP-γ-S within hours. Only the hexamers and the dimers exhibited MgATPase activity. Transmission electron microscopy of negatively stained CoxD preparations revealed distinct particles within a size range of 10–16 nm, which further corroborates the oligomeric organization. The 3D structure of CoxD was modeled with the 3D structure of BchI from Rhodobacter capsulatus as template. It has the key elements of an AAA+ domain in the same arrangement and at same positions as in BchI and displays the characteristic inserts of the PS-II-insert clade. Possible functions of CoxD in [CuSMoO2] cluster assembly are discussed.  相似文献   

18.
The effects of dilute H2SO4 concentration, forage:sulfuric acid ratio, digestion time, and digestion temperature were evaluated to determine effects on ethanol yield of Triarrhena sacchariflora (Maxim.) Nakai. Twenty single factor experiments were conducted to evaluate H2SO4 concentration (0.5, 1.0, 1.5, 2.0, and 2.5%, w/w), forage:sulfuric acid ratio (1∶6, 1∶8, 1∶10, 1∶12, and 1∶14, g/ml), digestion time (15, 30, 45, 60, and 90, min), digestion temperature (80, 100, 110, 120, and 125 °C) for 3 replicates of the 5 levels of each factor. Based on results of the single factor experiments, an incomplete factorial was designed to evaluate ethanol yield from the best combinations of single factors. Finally, the best combination was tested by enzymatic hydrolysis and fermentation experiment in selected combinations according to pretreatment results. Percentage cellulose, hemicellulose, and lignin contents of forage residue after pretreatment, and glucose and xylose concentrations of the filtrate were analyzed prior to enzymatic hydrolysis, and percentage crystallinity was observed in untreated grass and pretreated residue. In addition, the solid residues were then hydrolysed and fermented by cellulase and yeast, the concentrations of glucose and ethanol being monitored for 96 h. Results showed that the order of the effect of main effect factors was as follows: digestion temperature > dilute H2SO4 concentration > digestion time > forage:sulfuric acid ratio. The best process parameters evaluated were sulfuric acid concentration of 1.5%, forage:sulfuric acid ratio of 1∶6, digestion time of 15 min, and digestion temperature of 120°C. With this combination of factors, 80% of the cellulose was hydrolysed in 96 h, and 78% converted to ethanol. The findings identified that hemicelluloses were the key deconstruction barrier for pretreatment of Triarrhena sacchariflora (Maxim.) Nakai for ethanol production. The results of this research provide evidence of appropriate combinations of processing factors for production of ethanol from Triarrhena sacchariflora (Maxim.) Nakai.  相似文献   

19.
M-wave modulation at relative levels of maximal voluntary contraction   总被引:1,自引:0,他引:1  
Frequency (mean and median power frequency, f and f m) and amplitude (average rectified and root mean square values, ARV and rms), parameters of the M-wave, and the dorsiflexor force parameters of the anterior tibial muscles were measured in seven healthy human subjects. Intermittent, voluntary contractions at relative intensities (40%, 60%, and 80%) of maximal voluntary contraction (MVC) were performed in conjunction with electrical stimulation. The M-wave parameter changes were measured over the course of the isometric contractions. At higher force levels, M-wave potentiation was observed as increases in both ARV and rms. The ARV augmentation attained levels as high as 206.1 (SD 7.4)% of resting values after both initial and final contractions of 80% MVC, reaching statistical significance (P < 0.01). The f and f m failed to show a significant difference at any level of contraction. It was surmised that potentiation of the M-wave was the result of an increased contribution of muscle fibre type IIb recruited during higher contraction levels, reflecting the change to larger, deeper innervating motoneurons as the intensity of contraction, as a percentage of MVC, rose. Recruitment of type IIb fibres, which have been reported to have a higher energy potential and frequency content, were thought to reflect changes in the local, excitability threshold of some motor units as the force intensity increased during the intermittent voluntary contractions. It is suggested that the M-wave elicited after contractions has the potential to reflect, to some extent, motor unit recruitment changes resulting from the preceding contractions, and that through comparisons of M-wave amplitude parameters, contributions of varying fibre types over the course of a contraction may be indicated.  相似文献   

20.
Enhanced nitrogen (N) availability is one of the main drivers of biodiversity loss and degradation of ecosystem functions. However, in very nutrient-poor ecosystems, enhanced N input can, in the short-term, promote diversity. Mediterranean Basin ecosystems are nutrient-limited biodiversity hotspots, but no information is available on their medium- or long-term responses to enhanced N input. Since 2007, we have been manipulating the form and dose of available N in a Mediterranean Basin maquis in south-western Europe that has low ambient N deposition (<4 kg N ha−1 yr−1) and low soil N content (0.1%). N availability was modified by the addition of 40 kg N ha−1 yr−1 as a 1∶1 NH4Cl to (NH4)2SO4 mixture, and 40 and 80 kg N ha−1 yr−1 as NH4NO3. Over the following 5 years, the impacts on plant composition and diversity (richness and evenness) and some ecosystem characteristics (soil extractable N and organic matter, aboveground biomass and % of bare soil) were assessed. Plant species richness increased with enhanced N input and was more related to ammonium than to nitrate. Exposure to 40 kg NH4 +-N ha−1 yr−1 (alone and with nitrate) enhanced plant richness, but did not increase aboveground biomass; soil extractable N even increased under 80 kg NH4NO3-N ha−1 yr−1 and the % of bare soil increased under 40 kg NH4 +-N ha−1 yr−1. The treatment containing less ammonium, 40 kg NH4NO3-N ha−1 yr−1, did not enhance plant diversity but promoted aboveground biomass and reduced the % of bare soil. Data suggest that enhanced NHy availability affects the structure of the maquis, which may promote soil erosion and N leakage, whereas enhanced NOx availability leads to biomass accumulation which may increase the fire risk. These observations are relevant for land use management in biodiverse and fragmented ecosystems such as the maquis, especially in conservation areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号