首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer's disease (AD) is one key medical challenge of the aging society and despite a great amount of effort and a huge collection of acquired data on molecular mechanisms that are associated with the onset and progression of this devastating disorder, no causal therapy is in sight. The two main hypotheses of AD, the amyloid cascade hypothesis and the Tau hypothesis, are still in the focus of AD research. With aging as the accepted main risk factor of the most important non familial and late onset sporadic forms of AD, it is now mandatory to discuss more intensively aspects of cellular aging and aging biochemistry and its impact on neurodegeneration. Since aging is accompanied by changes in cellular protein homeostasis and an increasing demand for protein degradation, aspects of protein folding, misfolding, refolding and, importantly, protein degradation need to be linked to AD pathogenesis. This is the purpose of this short review.  相似文献   

2.
3.
Parkinson’s disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.  相似文献   

4.
Biochemistry (Moscow) - Alzheimer’s disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the...  相似文献   

5.
6.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.  相似文献   

7.
Bridging integrator 1 (BIN1) has been implicated in sporadic Alzheimer’s disease (AD) by a number of genome wide association studies (GWAS) in a variety of populations. Here we measured BIN1 in frontal cortex samples from 24 sporadic AD and 24 age-matched non-dementia brains and correlated the expression of this protein with markers of AD. BIN1 was reduced by 87% (p=0.007) in sporadic AD compared to non-dementia controls, but BIN1 in sporadic AD did not correlate with soluble Aβ (rs=-0.084, p=0.698), insoluble Aβ (rs=0.237, p=0.269), Aβ plaque load (rs=0.063, p=0.771) or phospho-tau load (rs=-0.160, p=0.489). In contrast to our findings in sporadic AD, BIN1 was unchanged in the hippocampus from 6 cases of familial AD compared to 6 age-matched controls (p=0.488). BIN1 declined with age in a cohort of non-dementia control cases between 25 and 88 years but the correlation was not significant (rs=-0.449, p=0.081). Although BIN1 is known to have a role in endocytosis, and the processing of the amyloid precursor protein (APP) to form amyloid-β (Aβ) peptides is dependent on endocytosis, knockdown of BIN1 by targeted siRNA or the overexpression of BIN1 in a human neuroblastoma cell line (SH-SY5Y) had no effect on APP processing. These data suggest that the alteration in BIN1 is involved in the pathogenesis of sporadic, but not familial AD and is not a consequence of AD neurodegeneration or the ageing process, a finding in keeping with the numerous GWAS that implicate BIN1 in sporadic AD. However, the mechanism of its contribution remains to be established.  相似文献   

8.
Alzheimer??s disease (AD) poses a huge challenge for society and health care worldwide as molecular pathogenesis of the disease is poorly understood and curative treatment does not exist. The mechanisms leading to accelerated neuronal cell death in AD are still largely unknown, but accumulation of misfolded disease-specific proteins has been identified as potentially involved. In the present review, we describe the essential role of endoplasmic reticulum (ER) in AD. Despite the function that mitochondria may play as the central major player in the apoptotic process, accumulating evidence highlights ER as a critical organelle in AD. Stress that impairs ER physiology leads to accumulation of unfolded or misfolded proteins, such as amyloid ?? (A??) peptide, the major component of amyloid plaques. In an attempt to ameliorate the accumulation of unfolded proteins, ER stress triggers a protective cellular mechanism, which includes the unfolded protein response (UPR). However, when activation of the UPR is severe or prolonged enough, the final cellular outcome is pathologic apoptotic cell death. Distinct pathways can be activated in this process, involving stress sensors such as the JNK pathway or ER chaperones such as Bip/GRP94, stress modulators such as Bcl-2 family proteins, or even stress effectors such as caspase-12. Here, we detail the involvement of the ER and associated stress pathways in AD and discuss potential therapeutic strategies targeting ER stress.  相似文献   

9.
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.  相似文献   

10.
“Modern” medicine and pharmacology require an effective medical drug with a single compound for a specific disease. This seams very scientific but usually has unavoidable side effects. For example, the chemical therapy to cancer can totally damage the immunological ability of the patient leading to death early than non-treatment. On the other hand, natural antioxidant drugs not only can cure the disease but also can enhance the immunological ability of the patient leading to healthier though they usually have several compounds or a mixture. For the degenerative disease such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), natural antioxidant drugs are suitable drugs, because the pathogenesis of these diseases is complex with many targets and pathways. These effects are more evidence when the clinic trial is for long term treatment. The author reviews the studies on the protecting effects of natural antioxidants on neurons in neurodegenerative diseases, especially summarized the results about protective effect of green tea polyphenols on neurons against apoptosis of cellular and animal PD models, and of genestine and nicotine on neurons against Aβ—induced apoptosis of hippocampal neuronal and transgenic mouse AD models. Special issue in honor of Dr. Akitane Mori.  相似文献   

11.
Benefits from Dietary Polyphenols for Brain Aging and Alzheimer’s Disease   总被引:1,自引:0,他引:1  
Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood–brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer’s disease. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

12.
Prolyl endopeptidase (PEP) is believed to inactivate neuropeptides that are present in the extracellular space. However, the intracellular localization of PEP suggests additional, yet unidentified physiological functions for this enzyme. Here we studied the expression, enzymatic activity and subcellular localization of PEP in adult and aged mouse brain as well as in brains of age-matched APP transgenic Tg2576 mice and in brains of Alzheimer’s disease patients. In mouse brain PEP was exclusively expressed by neurons and displayed region- and age-specific differences in expression levels, with the highest PEP activity being present in cerebellum and a significant increase in hippocampal but not cortical or cerebellar PEP activity in aged mouse brain. In brains of young APP transgenic Tg2576 mice, hippocampal PEP activity was increased compared to wild-type littermates in the pre-plaque phase but not in aged mice with β-amyloid plaque pathology. This “accelerated aging” with regard to hippocampal PEP expression in young APP transgenic mice might be one factor contributing to the observed cognitive deficits in these mice in the pre-plaque phase and could also explain in part the cognition-enhancing effects of PEP inhibitors in serveral experimental paradigms.  相似文献   

13.
14.
Cellular and Molecular Neurobiology - Tau is a microtubule-associated protein with an intrinsically unstructured conformation. Tau is subjected to several pathological post-translational...  相似文献   

15.
正Alzheimer’s disease (AD), also known as Alzheimer’s, is a chronic neurodegenerative disorder with hallmark amyloid plaques in brain tissue. The diseases commences slowly and worsens over time (Sjogren et al. 1952). Although it has been investigated for over six decades, the cause of AD  相似文献   

16.
17.
Innate immunity and inflammatory response plays an important role in the pathogenesis of Alzheimer’s disease (AD). As the major resident immune cells in the brain, microglial cells constantly survey the microenvironment and are activated by and recruited to senile plaques. Subsequently, they can phagocytose amyloid-β (Aβ) and secrete pro-inflammatory cytokines that influence the surrounding brain tissue. Recently, a wealth of information linking the microglia-specific activation of NLRP3 inflammasome to AD pathogenesis has emerged. We review here the activation mechanisms of NLRP3 inflammasome in microglia and several downstream effects in the brain, demonstrating that toxic Aβ peptide can light a fire in NLRP3 inflammasome and eventually induce AD pathology and tissue damage. More importantly, it has been demonstrated that inhibition of NLRP3 could largely protect from memory loss and decrease Aβ deposition in AD transgenic mouse model. So, we further discuss the recent advances and challenges in targeting NLRP3 inflammasome for AD therapy.  相似文献   

18.
19.
Alzheimer’s disease (AD) is a major cause of dementia in the elderly. Pathologically, AD is characterized by the accumulation of insoluble aggregates of Aβ-peptides that are proteolytic cleavage products of the amyloid-β precursor protein (“plaques”) and by insoluble filaments composed of hyperphosphorylated tau protein (“tangles”). Familial forms of AD often display increased production of Aβ peptides and/or altered activity of presenilins, the catalytic subunits of γ-secretase that produce Aβ peptides. Although the pathogenesis of AD remains unclear, recent studies have highlighted two major themes that are likely important. First, oligomeric Aβ species have strong detrimental effects on synapse function and structure, particularly on the postsynaptic side. Second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. The mechanisms underlying these processes are beginning to be elucidated, and, although their relevance to AD remains debated, understanding these processes will likely allow new therapeutic avenues to AD.Alzheimer’s disease (AD) is a common neurodegenerative disease of the elderly, first described by the physician-pathologist Alois Alzheimer in 1907 (Maurer and Maurer 2003). Clinically, AD is characterized by progressive impairment of memory (particularly short-term memory in early stages) and other cognitive disabilities, personality changes, and ultimately, complete dependence on others. The most prevalent cause of dementia worldwide, AD afflicts >5 million people in the United States and >25 million globally (Alzheimer’s Association, http://www.alz.org). Age is the most important risk factor, with the prevalence of AD rising exponentially after 65 (Blennow et al. 2006). However, many cases of so-called AD above 80 yr of age may result from a combination of pathological dementia processes (Fotuhi et al. 2009). The apolipoprotein E (ApoE) gene is the most important genetic susceptibility factor for AD, with the relatively common ApoE4 allele (prevalence ∼16%) increasing the risk for AD threefold to fourfold in heterozygous dose (Kim et al. 2009).The histopathological hallmarks of AD are amyloid plaques (extracellular deposits consisting largely of aggregated amyloid beta [Aβ] peptide that are typically surrounded by neurons with dystrophic neurites) and neurofibrillary tangles (NFTs, intracellular filamentous aggregates of hyperphosphorylated tau, a microtubule-binding protein) (Blennow et al. 2006). The development of amyloid plaques typically precedes clinically significant symptoms by at least 10–15 yr. Amyloid plaques are found in a minority of nondemented elderly patients, who may represent a “presymptomatic” AD population. As AD progresses, cognitive function worsens, synapse loss and neuronal cell death become prominent, and there is substantial reduction in brain volume, especially in the entorhinal cortex and hippocampus. The best correlation between dementia and histopathological changes is observed with neurofibrillary tangles, whereas the relationship between the density of amyloid plaques and loss of cognition is weaker (Braak and Braak 1990; Nagy et al. 1995). In addition to amyloid plaques and neurofibrillary tangles, many AD cases exhibit widespread Lewy body pathology. (Lewy bodies are intracellular inclusion bodies that contain aggregates of α-synuclein and other proteins.) Particularly in very old patients, considerable overlap between AD, frontotemporal dementia, Lewy body dementia, and vascular disease is observed, and pure AD may be rare (Fotuhi et al. 2009).  相似文献   

20.
Autophagy is an essential degradation pathway in clearing abnormal protein aggregates in mammalian cells and is responsible for protein homeostasis and neuronal health. Several studies have shown that autophagy deficits occurred in early stage of Alzheimer’s disease (AD). Autophagy plays an important role in generation and metabolism of β-amyloid (Aβ), assembling of tau and thus its malfunction may lead to the progress of AD. By considering the above evidences, autophagy may be a new target in developing drugs for AD. So far, a number of mammalian target of rapamycin (mTOR)-dependent and independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the role for autophagy deficits in AD and the potential therapeutic effects of autophagy modulators in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号