首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity of microcystin-producing cyanobacteria in the western basin of Lake Erie was studied using sequence analysis of mcyA gene fragments. Distinct populations of potentially toxic Microcystis and Planktothrix were found in spatially isolated locations. This study highlights previously undocumented diversity of potentially toxic cyanobacteria.  相似文献   

2.
The reoccurrence of significant cyanobacterial blooms in Lake Erie during the last 13 years has raised questions concerning the long-term persistence of microcystin-producing cyanobacteria and the presence of natural sediment reservoirs for potentially toxic cyanobacteria in this large lake system. To address these questions, we analyzed phytoplankton and sediment samples which were collected and preserved in the 1970s as well as samples collected in 2004 from locations within Lake Erie. The identification of microcystin-producing cyanobacteria in Lake Erie was examined via PCR amplification of the mcyA gene fragment. Based on the high % sequence similarity, the mcyA sequences from all 1970s phytoplankton and sediment samples were determined to belong to Microcystis spp., in spite of reports suggesting that Lake Erie was dominated by filamentous cyanobacteria in the 1970s. In sediment samples from 2004, signature genes for Microcystis were distributed and preserved not only in the surface sediments but also up to 10–12 cm in depth. Based on cell quantities determined by a quantitative polymerase chain reaction (qPCR) method, 0.18% of eubacteria in the sediments were Microcystis cells, of which 4.8% were potential microcystin producers. In combination with experiments showing that Microcystis cells can be cultured from Lake Erie surface sediments, this paper demonstrates the potential for these sediments to act as a reservoir for pelagic Microcystis populations and that the composition of the population of microcystin-producing cyanobacteria in Lake Erie has not changed remarkably since the 1970s.  相似文献   

3.
Cyanobacteria of genus Microcystis sp. have been commonly found in Lake Erie waters during recent summer seasons. In an effort to elucidate relationships between microcystin production, genotypic composition of Microcystis community and environmental parameters in a large lake ecosystem, we collected DNA samples and environmental data during a three-year (2003–2005) survey within Lake Erie and used the data to perform a series of correlation analyses. Cyanobacteria and Microcystis genotypes were quantified using quantitative real-time PCR (qPCR). Our data show that Microcystis in Lake Erie forms up to 42% of all cyanobacteria, and that Microcystis exists as a mixed population of potentially toxic and (primarily) non-toxic genotypes. In the entire lake, the total abundance of Microcystis as well as the abundance of microcystin-producing Microcystis is strongly correlated with the abundance of cyanobacteria suggesting that Microcystis is a significant component of the cyanobacterial community in Lake Erie during summer seasons. The proportion of total Microcystis of all cyanobacteria was strongly linked to the microcystin concentrations, while the percentage of microcystin-producing genotypes within Microcystis population showed no correlation with microcystin concentrations. Correlation analysis indicated that increasing total phosphorus concentrations correlate strongly with increasing microcystin concentrations as well as with the total abundance of Microcystis and microcystin-producing Microcystis.  相似文献   

4.
Lake Erie is the most socioeconomically important and productive of the Laurentian (North American) Great Lakes. Since the mid-1990s cyanobacterial blooms dominated primarily by Microcystis have emerged to become annual, late summer events in the western basin of Lake Erie yet the effects of these blooms on food web dynamics and zooplankton grazing are unclear. From 2005 to 2007, grazing rates of cultured (Daphnia pulex) and natural assemblages of mesozooplankton and microzooplankton on five autotrophic populations were quantified during cyanobacterial blooms in western Lake Erie. While all groups of zooplankton grazed on all prey groups investigated, the grazing rates of natural and cultured mesozooplankton were inversely correlated with abundances of potentially toxic cyanobacteria (Microcystis, Anabaena, and Cylindrospermopsis; p < 0.05) while those of the in situ microzooplankton community were not. Microzooplankton grazed more rapidly and consistently on all groups of phytoplankton, including cyanobacteria, compared to both groups of mesozooplankton. Cyanobacteria displayed more rapid intrinsic cellular growth rates than other phytoplankton groups under enhanced nutrient concentrations suggesting that future nutrient loading to Lake Erie could exacerbate cyanobacterial blooms. In sum, while grazing rates of mesozooplankton are slowed by cyanobacterial blooms in the western basin of Lake Erie, microzooplankton are likely to play an important role in the top-down control of these blooms; this control could be weakened by any future increases in nutrient loads to Lake Erie.  相似文献   

5.
After an absence of 40 years, mayfly nymphs of the genus Hexagenia were found in sediments of western Lake Erie of the Laurentian Great Lakes in 1993 and, by 1997, were abundant enough to meet a mayfly‐density management goal (ca. 350 nymphs m—2) based on pollution‐abatement programs. We sampled nymphs in western Lake Erie and Lake St. Clair, located upstream of western Lake Erie, to determine the importance of seasonal abundance and life‐history characteristics of nymphs (e.g., emergence and recruitment) on density estimates relative to the mayfly‐density management goal. Two types of density patterns were observed: (1) densities were relatively high in spring and gradually decreased through late summer (observed in Lake Erie and Lake St. Clair in 1997 and Lake St. Clair in 1999) and (2) densities were relatively high in spring, gradually decreased to mid summer, abruptly decreased in mid summer, and then increased between summer and late fall (Lake Erie and Lake St. Clair in 1998 and Lake Erie in 1999). Length‐frequency distributions of nymphs and observations of adults indicate that the primary cause for the two density patterns was attributed to failed (first pattern) and successful (second pattern) reproduction and emergence of nymphs into adults in mid summer. Gradual declines in densities were attributed to mortality of nymphs. Our results indicate that caution should be used when evaluating progress of pollution‐abatement programs based on mayfly densities because recruitment success is variable both between and within years. Additionally, the interpretation of progress toward management goals, relative to the restoration of Hexagenia populations in the Great Lakes and possibly other water bodies throughout the world, is influenced by the number of years in which consequtive collections are made.  相似文献   

6.
The increased frequency and intensity of drought with climate change may cause an increase in the magnitude and toxicity of freshwater cyanobacteria harmful algal blooms (CHABs), including Microcystis blooms, in San Francisco Estuary, California. As the fourth driest year on record in San Francisco Estuary, the 2014 drought provided an opportunity to directly test the impact of severe drought on cyanobacteria blooms in SFE. A field sampling program was conducted between July and December 2014 to sample a suite of physical, chemical, and biological variables at 10 stations in the freshwater and brackish reaches of the estuary. The 2014 Microcystis bloom had the highest biomass and toxin concentration, earliest initiation, and the longest duration, since the blooms began in 1999. Median chlorophyll a concentration increased by 9 and 12 times over previous dry and wet years, respectively. Total microcystin concentration also exceeded that in previous dry and wet years by a factor of 11 and 65, respectively. Cell abundance determined by quantitative PCR indicated the bloom contained multiple potentially toxic cyanobacteria species, toxic Microcystis and relatively high total cyanobacteria abundance. The bloom was associated with extreme nutrient concentrations, including a 20-year high in soluble reactive phosphorus concentration and low to below detection levels of ammonium. Stable isotope analysis suggested the bloom varied with both inorganic and organic nutrient concentration, and used ammonium as the primary nitrogen source. Water temperature was a primary controlling factor for the bloom and was positively correlated with the increase in both total and toxic Microcystis abundance. In addition, the early initiation and persistence of warm water temperature coincided with the increased intensity and duration of the Microcystis bloom from the usual 3 to 4 months to 8 months. Long residence time was also a primary factor controlling the magnitude and persistence of the bloom, and was created by a 66% to 85% reduction in both the water inflow and diversion of water for agriculture during the summer. We concluded that severe drought conditions can lead to a significant increase in the abundance of Microcystis and other cyanobacteria, as well as their associated toxins.  相似文献   

7.
We investigated the molecular diversity of cyanobacteria and bacteria during a water bloom in a lake with a long history of toxic cyanobacterial blooms (Lake Kastoria, Greece). We also tested the hypothesis whether bloom-forming cyanobacteria are preserved in the lake’s sediment 2 years after the bloom. The dominant cyanobacteria during the bloom included the potentially toxin-producing Microcystis aeruginosa and several other Chroococcales forms closely related to the genus Microcystis. This suggests that the use of cyanobacterial-specific primers seems to be very informative in describing the cyanobacteria during the water blooms. The bacterial community showed high diversity, consisting mostly of singleton and doubleton phylotypes. The majority of the phylotypes were typical lake bacteria including some potential pathogens and toxin metabolising bacteria, suggesting that the dominant toxic cyanobacteria did not have any significant effect on the bacterial community structure. In the sediment, 2 years after the water bloom, no bloom-forming cyanobacteria were retrieved, suggesting that they cannot be preserved in the sediment. Similar to the water column, sediment bacterial diversity was also high, consisting mostly of yet-uncultured bacteria that are related to environments where organic matter degradation takes place.  相似文献   

8.
1. We analysed changes in energy reserves (lipid and glycogen) and length–weight relationships of burrowing mayflies (Hexagenia spp.) in 1997–99 to compare an established population in Lake St Clair with a recovering population in western Lake Erie of the Laurentian Great Lakes. In addition, we measured changes in water temperature and potential food in both water columns and sediments. 2. Although overall mean values of lipid and glycogen levels of Hexagenia nymphs from Lake St Clair and western Lake Erie were not significantly different, there were differences in seasonal patterns between the two lakes. In Lake St Clair, levels were highest in early spring, declined throughout the year, and reached their lowest levels in fall during all 3 years of study. In contrast, levels in western Lake Erie were lower in spring, increased to a maximum in summer, then declined in fall. Seasonal patterns in length–weight relationships were similar to those for lipid and glycogen. 3. Total lipid as a percentage of dry weight did not increase with developmental stage of nymphs until just prior to metamorphosis and emergence from water. However, the major reserve lipid, triacylglycerols, increased systematically with development stage. In the final stage of development, triacylglycerols declined, probably as a result of energy consumption and its conversion to other biochemical components for metamorphosis and reproduction. 4. Indicators of potential food (algal fluorescence in the water column and chlorophyll a and chlorophyll a/phaeophytin ratio in sediments) suggest that Hexagenia in Lake St Clair have a food source that is benthic based, especially in early spring, whereas in western Lake Erie nymphs have a food source that is water column based and settles to the lake bottom during late spring and summer.  相似文献   

9.
Spatial and seasonal patterns in phytoplankton and zooplankton communities of Lake St. Clair from June through September, 1984 are described. Phytoplankton biomass averages 586 µg l-1 with the Diatomae and Chrysophyceae predominating. Zooplankton biomass averages 663 µg l- with small bosminid Cladocera being the most abundant organisms. Lake St. Clair zooplankton biomass is second only to that of Lake Erie amongst the St. Lawrence Great Lakes. Biomass size spectra are typical in structure for mesotrophic lakes but low explained variance in the annual normalized spectrum is indicative of a perturbed system. Since 1972/1973 there appears to have been a slight decrease in zooplankton abundance in the lake accompanied by a shift from dominance of rotifers to dominance of cladocerans. We hypothesize that high flushing rate and seasonal variability coupled with contaminant loadings have resulted in a plankton community reduced in taxonomic diversity and dominated by small-bodied species.  相似文献   

10.
The Eurasian freshwater tubenose goby Proterorhinus semilunaris (formerly Proterorhinus marmoratus) invaded the Laurentian Great Lakes in the 1990s, presumably via ballast water from transoceanic cargo ships. Tubenose gobies spread throughout Lake St. Clair, its tributaries, and the Detroit River system, and also are present in the Duluth-Superior harbor of Lake Superior. Using seines and bottom trawls, we collected 113 tubenose gobies between July 2007 and August 2009 at several locations in western Lake Erie. The number and range of sizes of specimens collected suggest that that tubenose gobies have become established and self-sustaining in the western basin of Lake Erie. Tubenose gobies reached maximum densities in sheltered areas with abundant macrophyte growth, which also is their common habitat in native northern Black Sea populations. The diet of tubenose gobies was almost exclusively invertebrates, suggesting dietary overlap with other benthic fishes, such as darters (Etheostoma spp. and Percina sp.), madtoms (Noturus spp.), and sculpins (Cottus spp.). A single mitochondrial DNA haplotype was identified, which is the most common haplotype found in the original colonization area in the Lake St. Clair region, suggesting a founder effect. Tubenose gobies, like round gobies Neogobius melanostomus, have early life stages that drift owing to vertical migration, which probably allowed them to spread from areas of colonization. The Lake St. Clair-Lake Erie corridor appears to have served as an avenue for them to spread to the western basin of Lake Erie, and abundance of shallow macrophyte-rich habitats may be a key factor facilitating their further expansion within Lake Erie and the remainder of the Laurentian Great Lakes.  相似文献   

11.
Microcystins (MC), the most prevalent group of harmful cyanobacterial hepatotoxins, are primarily produced by strains of cyanobacteria in Microcystis, Anabaena and Planktothrix. Lake Taihu, which is the third largest freshwater lake in China, is a hypertrophic shallow lake in eastern China that has experienced lake-wide cyanobacterial blooms annually during the last few decades. In this study, PCR-DGGE was used to evaluate the diversity of potential MC-producing cyanobacteria and real-time PCR was used to analyze the dynamics of this population based on the presence of the mcy gene in samples collected during a year long study. The results revealed that all MC-producing genotypes detected belonged to the genus Microcystis. In addition, the MC-producing genotype communities were more diverse during the bloom season than the non-bloom season, and the diversity in the late bloom period was lower than the diversity in the early bloom period. Furthermore, the abundance of MC-producing genotypes increased dramatically during the bloom development period, reaching its peak in late summer (September). The results also suggested that the highest mcy gene concentration lagged behind the highest MC concentration, and the potential MC-producing cyanobacterial community shift lagged behind the development of blooms.  相似文献   

12.
Western Lake Erie (WLE) experiences anthropogenic eutrophication and annual, toxic cyanobacterial blooms of non-nitrogen (N) fixing Microcystis. Numerous studies have shown that bloom biomass is correlated with an increased proportion of soluble reactive phosphorus loading from the Maumee River. Long term monitoring shows that the proportion of the annual Maumee River N load of non-nitrate N, or total Kjeldahl nitrogen (TKN), has also increased significantly (Spearman's ρ = 0.68, p = 0.001) over the last few decades and is also significantly correlated to cyanobacterial bloom biomass (Spearman's ρ = 0.64, p = 0.003). The ratio of chemically reduced N to oxidized N (TKN:NO3) concentrations was also compared to extracted chlorophyll and phycocyanin concentrations from all weekly sampling stations within WLE from 2009 to 2015. Both chlorophyll (Spearman's ρ = 0.657, p < 0.0001) and phycocyanin (Spearman's ρ = 0.714, p < 0.0001) were significantly correlated with TKN:NO3. This correlation between the increasing fraction of chemically reduced N from the Maumee River and increasing bloom biomass demonstrates the urgent need to control N loading, in addition to current P load reductions, to WLE and similar systems impacted by non-N-fixing, toxin-producing cyanobacteria.  相似文献   

13.
Laurentian Great Lakes Lake Sturgeon (Acipenser fulvescens) are hosts to lamprey species, including native Silver Lamprey (Ichthyomyzon unicuspis) and invasive Sea Lamprey (Petromyzon marinus). Silver Lamprey coevolved with Lake Sturgeon and cause negligible mortality, but Sea Lamprey can negatively affect Lake Sturgeon populations. Sea Lamprey abundance in Lake Erie has been above targets set by resource managers, with the St. Clair – Detroit River System (SCDRS) suspected as a source of Sea Lamprey production into Lake Erie. This study summarizes lamprey marking on Lake Sturgeon captured during agency assessment surveys in the SCDRS since 1996 and provides insight on the potential for Sea Lamprey to negatively affect Lake Sturgeon in the SCDRS. Lamprey marks (any lamprey species) were noted on 48.2% of Lake Sturgeon (2.5 marks/fish) and 3.3% of Lake Sturgeon assumed to be susceptible to mortality by Sea Lamprey (<760 mm TL; 0.06 marks/fish). Silver Lamprey were the only lamprey species found attached to Lake Sturgeon and there was no difference between oral disc diameters of Silver Lamprey and marks measured on Lake Sturgeon in Lake St. Clair and the lower St. Clair River (p = .45). Based on logistic regression, probability of at least one lamprey mark increased with Lake Sturgeon total length and was highest in Lake St. Clair. The probability of observing at least one lamprey mark on a 760 mm Lake Sturgeon was 8.1% or less for each sampling location in the SCDRS aside from Lake St. Clair (28.1%). Results suggest that parasitism of Lake Sturgeon by Sea Lamprey in the SCDRS is rare, particularly for Lake Sturgeon <760 mm TL. Low incidence of lamprey marks on Lake Sturgeon assumed to be susceptible to mortality from Sea Lamprey parasitism and zero occurrence of Sea Lamprey being observed attached to a Lake Sturgeon suggest Sea Lamprey at their current abundance likely have little effect on the Lake Sturgeon population in the SCDRS. Caution should be taken when using mark size to assign marks to lamprey species as there is substantial overlap among species oral disc diameters, potentially inflating the perceived impact of Sea Lamprey on Lake Sturgeon in areas with native lampreys.  相似文献   

14.
Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacterium Microcystis causes toxic blooms that threaten freshwater ecosystems and human health globally. Microcystis grows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions with Microcystis are not well characterized. To identify the taxa and compositional variance within Microcystis phycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individual Microcystis colonies collected biweekly via high-throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. The Microcystis phycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked ‘core’ taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and the Microcystis 16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved with Microcystis of a single oligotype or sampling date. Together, this suggests that physiological differences between Microcystis strains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of the Microcystis phycosphere.  相似文献   

15.
During the past decade, algae blooms, which include the toxic cyanobacterium Microcystis, have reoccurred in the Laurentian Great Lakes, most commonly in the western basin of Lake Erie. Whereas the western basin is the most impacted by toxic Microcystis in Lake Erie, there has historically been little effort focused on identifying the spatial distribution of Microcystis throughout this lake. To address this lack of knowledge, we have employed a polymerase-chain-reaction-based detection of genes required for synthesis of the toxin microcystin (mcyD and mcyB), as well as 16S rDNA fragments specific to either all Microcystis or all cyanobacteria. Using a multiplex approach, we tested 21 samples from 13 field stations and found that toxigenic Microcystis were present in the western and eastern basins in the summers of 1999, 2000, and 2002 and the central basin in 1999 and 2002. This is the most extensive distribution of Microcystis reported in Lake Erie. Clone libraries (16S rDNA) of these cyanobacterial communities were generated from 7 of the 13 field stations (representing all three basins) to partially characterize this microbial community. These libraries were shown to be dominated by sequences assigned to the Synechococcus and Cyanobium phylogenetic cluster, indicating the importance of picoplankton in this large lake system.  相似文献   

16.
The aim of this study was to understand: (1) how environmental conditions can contribute to formation of Microcystis-dominated blooms in lowland, dam reservoirs in temperate climate—with the use of quantitative molecular monitoring, and (2) what is the role of toxic Microcystis genotypes in the bloom functioning. Monitoring of the Sulejow Reservoir in 2009 and 2010 in two sites Tresta (TR) and Bronislawow BR), which have different morphometry, showed that physicochemical conditions were always favorable for cyanobacterial bloom formation. In 2009, the average biomass of cyanobacteria reached 13 mg L?1 (TR) and 8 mg L?1 (BR), and in the second year, it decreased to approximately 1 mg L?1 (TR and BR). In turns, the mean number of toxic Microcystis genotypes in the total Microcystis reached 1 % in 2009, both in TR and BR, and in 2010, the number increased to 70 % in TR and 14 % in BR. Despite significant differences in the biomass of cyanobacteria in 2009 and 2010, the mean microcystins (MCs) concentration and toxicity stayed at a similar level of approximately 1 μg L?1. Statistical analysis indicated that water retention time was a factor that provided a significant difference between the two monitoring seasons and was considered a driver of the changes occurring in the Sulejow Reservoir. Hydrologic differences, which occurred between two studied years due to heavy flooding in Poland in 2010, influenced the decrease in number of Microcystis biomass by causing water disturbances and by lowering water temperature. Statistical analysis showed that Microcystis aeruginosa biomass and 16S rRNA gene copy number representing Microcystis genotypes in both years of monitoring could be predicted on the basis of total and dissolved phosphorus concentrations and water temperature. In present study, the number of mcyA gene copies representing toxic Microcystis genotypes could be predicted based on the biomass of M. aeruginosa. Moreover, MCs toxicity and concentration could be predicted on the basic of mcyA gene copy number and M. aeruginosa (biomass, 16S rRNA), respectively. Present findings may indicate that Microcystis can regulate the number of toxic genotypes, and in this way adjust the whole bloom to be able to produce MCs at the level which is necessary for its maintenance in the Sulejow Reservoir under stressful hydrological conditions.  相似文献   

17.
Pisidium moitessierianum Paladilhe, 1866, a small pea clam native to Europe, was identified for the first time from the lower Great Lakes basin based on an examination of historical collections of Pisidium performed by V. Sterki in 1894 and 1903 and new material collected during 1997 and 1998. During recent surveys, P. moitessierianum individuals were found in the St. Clair River delta, Lake St. Clair and western Lake Erie, but were not detected in the Detroit River or western Lake Ontario. Pisidium moitessierianum was collected on sand, silty sand and mud substrata from water depths ranging between 0.6 and 5.4 m. Populations occurred at an average density of 51 ind. m–2 and included juveniles and adults. All individuals were less than 2.0 mm in length. We examined the structure of the umbos and hinge, surface sculpture and shape of the shell, and the anatomy of gills, mantle and nephridia in populations from the lower Great Lakes and Ukrainian inland basins (Dnieper River and Lake Beloye). The results indicated that the Great Lakes' pea clams match European specimens of P. moitessierianum in these conchological and anatomical characteristics. As with other nonindigenous sphaeriids in the Great Lakes, P. moitessierianum was likely introduced through shipping activities into the Great Lakes, possibly as early as the 1890s.  相似文献   

18.
The zooplankton community in the highly eutrophic Lake Kasumigaura was investigated and its relation to a bloom of Microcystis was analyzed. The zooplankton community was dominated by small cladocerans, whose biomass and production became highest in summer, when Microcystis bloomed. The high cladoceran production is considered to depend on the production of colonial Microcystis, because the production of nannoplankton was apparently too low to ensure the cladoceran production. Microcystis cells were unsuitable as food for the cladocerans inhabiting Lake Kasumigaura, but became utilizable when decomposed. Decomposed Microcystis may be the main food for Cladocera in the lake in summer. High water temperatures occurring in summer probably promoted decomposition of the Microcystis, leading to increased production of the small cladocerans.  相似文献   

19.
The South African impoundments of Hartbeespoort and Roodeplaat experience excessive blooms of Microcystis species each year. Microcystins, produced primarily by strains of cyanobacteria belonging to the genera Microcystis, Anabaena and Planktothrix, are harmful cyanobacterial hepatotoxins. These bloom-forming cyanobacteria form toxic and non-toxic strains that co-occur and are visually indistinguishable, but can be identified and quantified molecularly. We described the relationships between microcystin production and the genotypic composition of the Microcystis community involved together with environmental conditions in both the Roodeplaat and Hartbeespoort reservoirs using quantitative real time PCR. DNA copy number of the Microcystis-specific 16S rRNA and toxin biosynthesis genes, mcyE and mcyB, were measured. Planktothrix spp. occurred in both reservoirs during autumn, but no toxin-producing species was present as measured with mcyE specific primers, whereas both toxic and non-toxic strains of Microcystis were recorded in both reservoirs, with Microcystis spp. dominating in the summer months. Water-surface temperature correlated strongly with microcystin concentration, mcyE and mcyB copy number. Microcystin production was associated by temperatures higher than 23 °C. This suggests that should current environmental trends persist with surface water temperatures continuing to rise and more and more nutrients continued to be loaded into fresh water systems toxic Microcystis may outgrow non-toxic Microcystis and synthesise even more microcystins.  相似文献   

20.
We studied the seasonal variation in concentrations of nutrients and phytoplankton in Lake Yogo for 2 years, from May 2000 to May 2002, in order to clarify the seasonal succession of phytoplankton and the effect of various manipulations on it. It was revealed that in spite of the installation of aeration systems and the pumping of mesotrophic water from Lake Biwa during the summer season, the trophic state of Lake Yogo overall has not improved during the past few decades. However, the pumping of water from Lake Biwa did affect the concentrations of nutrients and the periods of cyanobacterial bloom during the summer. The pumping period was different in each year, and the cyanobacterial bloom occurred during the period without pumping in both years. The aeration destratification was not strong enough to prevent cyanobacterial blooms. Cyanobacteria and Bacillariophyceae contributed most to the phytoplankton biomass in both years. Aphanizomenon, Anabaena, and Microcystis were the main genera among cyanobacteria. The bloom of Aphanizomenon or Anabaena occurred early in the summer, and was then replaced by Microcystis. Aphanizomenon was almost always present, and often formed bloom even in winter. The seasonal succession of Bacillariophyceae was almost the same in both years and was well categorized: winter-growing species such as Aulacoseira pusilla (F. Meister) Tuji et Houki and species of Thalassiosiraceae, spring-growing species such as Asterionella formosa Hassall, Fragilaria crotonensis Kitton, and Synedra cf. acus, and fall-growing species such as Aulacoseira ambigua (Grunow) Simonsen, and Aulacoseira granulata (Ehrenb.) Simonsen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号