首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burkholderia cepacia AC1100 metabolizes 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) via formation of 5-chlorohydroxyquinol (5-CHQ), hydroxyquinol (HQ), maleylacetate, and β-oxoadipate. The step(s) leading to the dechlorination of 5-CHQ to HQ has remained unidentified. We demonstrate that a dechlorinating enzyme, TftG, catalyzes the conversion of 5-CHQ to hydroxybenzoquinone, which is then reduced to HQ by a hydroxybenzoquinone reductase (HBQ reductase). HQ is subsequently converted to maleylacetate by hydroxyquinol 1,2-dioxygenase (HQDO). All three enzymes were purified. We demonstrate specific product formation by colorimetric assay and mass spectrometry when 5-CHQ is treated successively with the three enzymes: TftG, TftG plus HBQ reductase, and TftG plus HBQ reductase plus HQDO. This study delineates the complete enzymatic pathway for the degradation of 5-CHQ to maleylacetate.  相似文献   

2.
Summary Several lines of evidence were obtained that the previously identified, repeated sequence RS 1100 of Pseudomonas cepacia strain AC1100 undergoes transposition events. DNA sequences flanking the chlorohydroxy hydroquinone (CHQ) degradative genes of this organism were examined from sources, including several independently isolated cosmid clones from an AC1100 genomic library and genomic DNAs of two independently maintained wild-type AC1100 isolates. Hybridization and restriction endonuclease mapping studies revealed these sequences to be similar except for their numbers and distributions of RS1100 copies. A recombinant plasmid containing the immediate chq gene region and excluding any copies of RS1100 was conjugated into AC1100 mutant RHA5 which was shown to have undergone a deletion of its corresponding DNA. Hybridization and restriction mapping analyses of several reisolated plasmids revealed the presence of RS1100 sequences at different positions within either the vector or insert portions. One such plasmid contained tandem copies of RS1100 with an intervening DNA sequence also of AC1100 origin. Similar experiments involving introduction of the promoter probe plasmid pKT240 into wild-type AC1100 cells resulted in the acquisition of high-concentration streptomycin resistance by a number of recipients. The reisolated plasmids in most cases also conferred streptomycin resistance to Escherichia coli transformants and in each case were found to contain insertions close to the upstream portion of the aphC structural gene. These insertions alternatively contained RS1100 sequences or a newly identified 3400 by repeated sequence from AC1100. Based on these results, RS1100 has been redesignated as insertion sequence IS931 and the 3400 bp repeated sequence has been designated as IS932.[/ab]Abbreviations aphc aminoglycoside phosphotransferase gene - BSM basal salts medium - chq chlorohydroxy hydroquinone degradative gene(s) - dCTP deoxycytidine triphosphate - IS insertion sequence - Tft 2,4,5-T degradative phenotype  相似文献   

3.
Burkholderia cepacia AC1100 utilizes 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole source of carbon and energy. PT88 is a chromosomal deletion mutant of B. cepacia AC1100 and is unable to grow on 2,4,5-T. The nucleotide sequence of a 5.5-kb chromosomal fragment from B. cepacia AC1100 which complemented PT88 for growth on 2,4,5-T was determined. The sequence revealed the presence of six open reading frames, designated ORF1 to ORF6. Five polypeptides were produced when this DNA region was under control of the T7 promoter in Escherichia coli; however, no polypeptide was produced from the fourth open reading frame, ORF4. Homology searches of protein sequence databases were performed to determine if the proteins involved in 2,4,5-T metabolism were similar to other biodegradative enzymes. In addition, complementation studies were used to determine which genes were essential for the metabolism of 2,4,5-T. The first gene of the cluster, ORF1, encoded a 37-kDa polypeptide which was essential for complementation of PT88 and showed significant homology to putative trans-chlorodienelactone isomerases. The next gene, ORF2, was necessary for complementation and encoded a 47-kDa protein which showed homology to glutathione reductases. ORF3 was not essential for complementation; however, both the 23-kDa protein encoded by ORF3 and the predicted amino acid sequence of ORF4 showed homology to glutathione S-transferases. ORF5, which encoded an 11-kDa polypeptide, was essential for growth on 2,4,5-T, but the amino acid sequence did not show homology to those of any known proteins. The last gene of the cluster, ORF6, was necessary for complementation of PT88, and the 32-kDa protein encoded by this gene showed homology to catechol and chlorocatechol-1,2-dioxygenases.  相似文献   

4.
Our previous research has demonstrated that novel 43-kDa DnaK and 41-kDa GroEL proteins are synthesized in Burkholderia sp. YK-2 in response to sublethal concentrations of 2,4-D stress [Cho et al. (2000) Curr Microbiol 41:33–38]. In this study, we have extended this work to examine the cellular responses of strain YK-2 to stresses induced in response to the phenoxyherbicides 2,4-D or 2,4,5-T. Strain YK-2 exhibited a more sensitive response to 2,4,5-T stress than to 2,4-D stress, as shown in physiological and morphological changes, suggesting a greater cytotoxic effect of 2,4,5-T. SEM analyses revealed the presence of perforations and irregular rod forms with wrinkled surfaces for cells treated with either herbicide. These irregularities were found more frequently for 2,4,5-T-treated cells than for 2,4-D-treated cells. Analysis of cellular fatty acids showed similar effects in the shifts of total cellular fatty acid composition in response to 2,4-D and 2,4,5-T. Strain YK-2 could degrade 2.25 mM 2,4-D completely during 28 h of incubation with transient production of 2,4-dichlorophenol as a metabolite; however, 2,4,5-T was not catabolized at any of the concentrations tested. BIOLOG and 16S rDNA analyses revealed that strain YK-2 was 98% similar to the Burkholderia cepacia species cluster; therefore, we have designated this strain as B. cepacia YK-2. Received: 7 February 2002 / Accepted: 7 March 2002  相似文献   

5.
Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compounds provided as single substrates. These combined cell suspensions, however, poorly degraded mixtures of the two compounds provided at the same concentrations. Growth and viability studies revealed that such mixtures of 2,4-D and 2,4,5-T were toxic to AC1100 alone and to combinations of AC1100 and JMP134. High-pressure liquid chromatography analyses of culture supernatants of AC1100 incubated with 2,4-D and 2,4,5-T revealed the accumulation of chlorohydroquinone as an apparent dead-end catabolite of 2,4-D and the subsequent accumulation of both 2,4-dichlorophenol and 2,4,5-trichlorophenol. JMP134 cells incubated in the same medium did not catabolize 2,4,5-T and were also inhibited in initiating 2,4-D catabolism. A new derivative of strain AC1100 was constructed by the transfer into this organism of the 2,4-D-degradative plasmid pJP4 from strain JMP134. This new strain, designated RHJ1, was shown to efficiently degrade mixtures of 2,4-D and 2,4,5-T through the simultaneous metabolism of these compounds.  相似文献   

6.
The strain of Pseudomonas cepacia, AC1100, capable of utilizing 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole source of carbon and energy can degrade 2,4,5-T in contaminated soil, removing more than 99% of 2,4,5-T present at 1 mg/g of soil within 1 week. Repeated application of AC1100 even allowed more than 90% removal of 2,4,5-T within 6 weeks from heavily contaminated soil containing as much as 20,000 ppm 2,4,5,-T (20 mg/g of soil). Microbial removal of 2,4,5-T allowed the soil to support growth of plants sensitive to low concentrations of 2,4,5-T. After 2,4,5-T removal, the titer of AC1100 in the soil rapidly fell to undetectable levels within a few weeks.  相似文献   

7.
The strain of Pseudomonas cepacia, AC1100, capable of utilizing 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a sole source of carbon and energy can degrade 2,4,5-T in contaminated soil, removing more than 99% of 2,4,5-T present at 1 mg/g of soil within 1 week. Repeated application of AC1100 even allowed more than 90% removal of 2,4,5-T within 6 weeks from heavily contaminated soil containing as much as 20,000 ppm 2,4,5,-T (20 mg/g of soil). Microbial removal of 2,4,5-T allowed the soil to support growth of plants sensitive to low concentrations of 2,4,5-T. After 2,4,5-T removal, the titer of AC1100 in the soil rapidly fell to undetectable levels within a few weeks.  相似文献   

8.
Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compounds provided as single substrates. These combined cell suspensions, however, poorly degraded mixtures of the two compounds provided at the same concentrations. Growth and viability studies revealed that such mixtures of 2,4-D and 2,4,5-T were toxic to AC1100 alone and to combinations of AC1100 and JMP134. High-pressure liquid chromatography analyses of culture supernatants of AC1100 incubated with 2,4-D and 2,4,5-T revealed the accumulation of chlorohydroquinone as an apparent dead-end catabolite of 2,4-D and the subsequent accumulation of both 2,4-dichlorophenol and 2,4,5-trichlorophenol. JMP134 cells incubated in the same medium did not catabolize 2,4,5-T and were also inhibited in initiating 2,4-D catabolism. A new derivative of strain AC1100 was constructed by the transfer into this organism of the 2,4-D-degradative plasmid pJP4 from strain JMP134. This new strain, designated RHJ1, was shown to efficiently degrade mixtures of 2,4-D and 2,4,5-T through the simultaneous metabolism of these compounds.  相似文献   

9.
10.
A polyphasic taxonomic study involving DNA-DNA hybridization, whole-cell protein electrophoresis, and 16S ribosomal DNA sequence analysis revealed that a group of Burkholderia cepacia-like organisms isolated from the rhizosphere or tissues of maize, wheat, and lupine belong to B. cepacia genomovar III, a genomic species associated with “cepacia syndrome” in cystic fibrosis patients. The present study also revealed considerable protein electrophoretic heterogeneity within this species and demonstrated that the B. cepacia complex consists of two independent phylogenetic lineages.  相似文献   

11.
L Xun 《Journal of bacteriology》1996,178(9):2645-2649
Burkholderia (formerly Pseudomonas) cepacia AC1100 mineralizes the herbicide 2,4,5-trichlorophenoxyacetate (2,4,5-T), and the first intermediate of 2,4,5-T degradation is 2,4,5-trichlorophenol. Chlorophenol 4-monooxygenase activity responsible for 2,4,5-trichlorophenol degradation was detected in the cell extract. The enzyme consisted of two components separated during purification, and both were purified to more than 95% homogeneity. The reconstituted enzyme catalyzed the hydroxylation of several tested chlorophenols with the coconsumption of NADH and oxygen. In addition to chlorophenols, the enzyme also hydroxylated some chloro-p-hydroquinones with the coconsumption of NADH and oxygen. Apparently, the single enzyme was responsible for converting 2,4,5-trichlorophenol to 2,5-dichloro-p-hydroquinone and then to 5-chlorohydroxyquinol (5-chloro-1,2,4-trihydroxybenzene). Component A had a molecular weight of 22,000 and contained flavin adenine dinucleotide. Component A alone catalyzed NADH-dependent cytochrome c reduction, indicating that it had reductase activity. Component B had a molecular weight of 58,000, and no catalytic activity has yet been shown by itself.  相似文献   

12.
A pure culture of Pseudomonas cepacia, designated AC1100, that can utilize 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as its sole source of carbon and energy was isolated. An actively growing culture of AC1100 was able to degrade more than 97% of 2,4,5-T, present at 1 mg/ml, within 6 days as determined by chloride release, gas chromatographic, and spectrophotometric analyses. The ability of AC1100 to oxidize a variety of chlorophenols and related compounds is also reported.  相似文献   

13.
Pseudomonas cepacia AC1100 degrades 2,4,5-trichlorophenoxyacetate (2,4,5-T), an herbicide and chlorinated aromatic compound. Although some progress has been made in understanding 2,4,5-T degradation by AC1100 by molecular analysis, little is known about the biochemistry involved. Enzymatic activity converting 2,4,5-T to 2,4,5-trichlorophenol in the presence of NADH and O(inf2) was detected in cell extracts of AC1100. Phenyl agarose chromatography of the ammonium sulfate-fractionated cell extracts yielded no active single fractions, but the mixing of two fractions, named component A and component B, resulted in the recovery of enzyme activity. Component B was further purified to homogeneity by hydroxyapatite and DEAE chromatographies. Component B had a native molecular weight of 140,000, and it was composed of two 49-kDa (alpha)-subunits and two 24-kDa (beta)-subunits. Component B was red, and its spectrum in the visible region had maxima at 430 and 560 nm (shoulder), whereas upon reduction it had maxima at 420 (shoulder) and 530 nm. Each mole of (alpha)(beta) heterodimer contained 2.9 mol of iron and 2.1 mol of labile sulfide. These properties suggest strong similarities between component B and the terminal oxygenase components of the aromatic ring-hydroxylating dioxygenases. Component A was highly purified but not to homogeneity. The reconstituted 2,4,5-T oxygenase, consisting of components A and B, converted 2,4,5-T quantitatively into 2,4,5-trichlorophenol and glyoxylate with the coconsumption of NADH and O(inf2).  相似文献   

14.
A genomic library of total DNA of Pseudomonas cepacia AC1100 was constructed on a broad-host-range cosmid vector pCP13 in Escherichia coli AC80. A 25-kb segment was isolated from the library which complemented a Tn5-generated, 2,4,5-trichlorophenoxyacetic acid-negative (2,4,5-T-) mutant, P. cepacia PT88. This mutation was partially characterized and appeared to be lacking functional enzyme required for metabolism of an intermediate of the 2,4,5-T pathway, recently identified as 5-chloro-1,2,4-trihydroxybenzene [Chapman et al., Abstr. Soc. Environ. Toxicol. Chem. USA 8 (1987) 127]. A simple colorimetric assay was developed to detect the presence of this active enzyme in intact cells and was used to determine the expression of complementing genes. Subcloning experiments showed that a 4-kb BamHI-PstI fragment and a 290-bp PstI-EcoRI fragment, separated by 1.3-kb, were required for complementation. Both fragments are identified to be chromosomal in origin. Hybridization studies using the subcloned fragments revealed that in addition to a Tn5 insertion, mutant PT88 contained an extensive chromosomal deletion accounting for its 2,4,5-T- phenotype. The cloned fragments did not show homology to plasmid DNAs carrying degradative genes for toluene, naphthalene and 3-chlorobenzoate.  相似文献   

15.
The majority of isolates of Burkholderia cepacia, an important opportunistic pathogen associated with cystic fibrosis, can be classified into two types on the basis of flagellin protein size. Electron microscopic analysis indicates that the flagella of strains with the larger flagellin type (type I) are wider in diameter. Flagellin genes representative of both types were cloned and sequenced to design oligonucleotide primers for PCR amplification of the central variable domain of B. cepacia flagellin genes. PCR-restriction fragment length polymorphism analysis of amplified B. cepacia flagellin gene products from 16 strains enabled flagellin type classification on the basis of product size and revealed considerable differences in sequence, indicating that the flagellin gene is a useful biomarker for epidemiological and phylogenetic studies of this organism.Burkholderia cepacia (formerly Pseudomonas cepacia; a member of the rRNA group II pseudomonads) has emerged as an increasingly important opportunistic pathogen, particularly in relation to patients suffering from cystic fibrosis (CF) (15). Acquisition of B. cepacia, often occurring after lengthy colonization with Pseudomonas aeruginosa, can lead to the rapid deterioration or death of CF patients, and this organism appears to be transmissible between patients (14). There is considerable evidence that some strains of B. cepacia are more virulent than others and that the outcome of colonization by a particular strain can vary from rapidly fatal septicemia to maintenance of stable respiratory function (16). A number of factors have been implicated in the greater virulence of some strains. These include adhesion to respiratory mucin (31, 32) and the presence of cable pili (33).Motility in B. cepacia is by means of polar flagella. Flagella, each consisting of a flagellin filament, hook, and basal body, have been implicated as invasive virulence factors for a number of bacteria (28), including P. aeruginosa (11). Unlike P. aeruginosa, which appears to sit in microcolonies in the viscid mucus, leading to progressive lung damage with episodes of acute debilitating exacerbation, some strains of B. cepacia cause rapidly fatal pneumonia in CF patients (15), suggesting that they may have the ability to move through the mucus. Because of their location on the outside of bacterial cells, flagellins have been targeted in vaccine design. Brett et al. (4) demonstrated that flagellin-specific antisera were capable of protecting diabetic rats from challenge with strains of Burkholderia pseudomallei (another member of rRNA group II). In a recent study, an O-polysaccharide moiety of B. pseudomallei was covalently linked to the flagellin protein from the same strain. O-polysaccharide–flagellin conjugates elicited a high-level immunoglobulin G response capable of protecting diabetic rats from challenge with a heterologous strain of B. pseudomallei (5).Two distinct flagellin protein molecular mass groups in B. cepacia have been reported by Montie and Stover (23). In this previous study, type I flagellins were reported as having a molecular mass of 31 kDa while the molecular mass of type II flagellins was reported as 44 to 46 kDa. This early study, using a limited number of isolates, suggested that with regard to flagellin, B. cepacia is analogous to another CF pathogen, P. aeruginosa, in which two flagellin antigenic types distinguishable by protein or gene size are found (43). Several representatives of the heterologous a-type and homologous b-type fliC loci of P. aeruginosa (encoding flagellins) have been sequenced (37). In addition, PCR amplification of flagellin genes coupled with restriction fragment length polymorphism (RFLP) analysis can be used as a method for differentiating between clinical isolates of P. aeruginosa (7, 43). In this paper we report the development of a similar approach to the study of populations of B. cepacia and discuss the divergence of a highly variable gene, the flagellin gene (fliC), within populations of B. cepacia.  相似文献   

16.
We characterized the genome of the antibiotic resistant, caseinolytic and non-hemolytic Burkholderia sp. strain TJI49, isolated from mango trees (Mangifera indica L.) with dieback disease. This isolate produced severe disease symptoms on the indicator plants. Next generation DNA sequencing and short-read assembly generated the 60X deep 7,631,934 nucleotide draft genome of Burkholderia sp. TJI49 which comprised three chromosomes and at least one mega plasmid. Genome annotation studies revealed a total 8,992 genes, out of which 8,940 were protein coding genes. Comparative genomics and phylogenetics identified Burkholderia sp. TJI49 as a distinct species of Burkholderia cepacia complex (BCC), closely related to B. multivorans ATCC17616. Genome-wide sequence alignment of this isolate with replicons of BCC members showed conservation of core function genes but considerable variations in accessory genes. Subsystem-based gene annotation identified the active presence of wide spread colonization island and type VI secretion system in Burkholderia sp. TJI49. Sequence comparisons revealed (a) 28 novel ORFs that have no database matches and (b) 23 ORFs with orthologues in species other than Burkholderia, indicating horizontal gene transfer events. Fold recognition of novel ORFs identified genes encoding pertactin autotransporter-like proteins (a constituent of type V secretion system) and Hap adhesion-like proteins (involved in cell–cell adhesion) in the genome of Burkholderia sp. TJI49. The genomic characterization of this isolate provided additional information related to the ‘pan-genome’ of Burkholderia species.  相似文献   

17.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

18.
Summary The effectiveness of gene probe methods for tracking genetically engineered microorganisms (GEMs) in the environment was tested by inoculating nutrient-supplemented freshwater microcosms withAlcaligenes A5 (a naturally occurring 4-chlorobiphenyl degrader) orPseudomonas cepacia AC1100 (a genetically engineered 2, 4, 5 T-degrader) and following the fates of the introduced bacterial populations. Colony hybridization of the viable heterotrophic bacterial populations and dot blot hybridization of DNA recovered from the total microcosm microbial communities showed persistence of bothAlcaligenes A5 andP. cepacia AC1100 in the microcosms in the presence and absence of the xenobiotic substrates that these organisms biodegrade. Although there was a gradual decline in the added populations, both of the bacterial populatins were still detected in the microcosms two months after their introduction into the microcosms. Addition of 2, 4, 5-T enhanced the survival ofP. cepacia AC1100 — and 4-chlorobiphenyl addition resulted in increased levels ofAlcaligenes A5. The results indicate that both organisms may persist for very long periods in freshwater habitats.  相似文献   

19.
Burkholderia is an important bacterial genus containing species of ecological, biotechnological, and pathogenic interest. With their taxonomy undergoing constant revision and the phenotypic similarity of several species, correct identification of Burkholderia is difficult. A genetic scheme based on the recA gene has greatly enhanced the identification of Burkholderia cepacia complex species. However, the PCR developed for the latter approach was limited by its specificity for the complex. By alignment of existing and novel Burkholderia recA sequences, we designed new PCR primers and evaluated their specificity by testing a representative panel of Burkholderia strains. PCR followed by restriction fragment length polymorphism analysis of an 869-bp portion of the Burkholderia recA gene was not sufficiently discriminatory. Nucleotide sequencing followed by phylogenetic analysis of this recA fragment differentiated both putative and known Burkholderia species and all members of the B. cepacia complex. In addition, it enabled the design of a Burkholderia genus-specific recA PCR that produced a 385-bp amplicon, the sequence of which was also able to discriminate all species examined. Phylogenetic analysis of 188 novel recA genes enabled clarification of the taxonomic position of several important Burkholderia strains and revealed the presence of four novel B. cepacia complex recA lineages. Although the recA phylogeny could not be used as a means to differentiate B. cepacia complex strains recovered from clinical infection versus the natural environment, it did facilitate the identification of clonal strain types of B. cepacia, B. stabilis, and B. ambifaria capable of residing in both niches.  相似文献   

20.
Primers specific for the genes tfdD, tfdE and tfdF, derived from conserved amino acid sequence motifs of the corresponding homologous enzymes, and primers specific for the genes tfdA and tfdB as well as tfdC taken from the literature were applied in PCR reactions using the genomic DNA of Delftia acidovorans P4a as the template. PCR products were obtained with all primer pairs that were similar in size to those found with the genomic DNA of strains harbouring plasmid pJP4 as the carrier of tfd genes. The nucleotide sequences and the corresponding amino acid sequences of the PCR products obtained with Strain P4a were compared with the sequence databases. According to BLAST analyses, the partial sequences of tfdA and tfdB exhibited a 94–99% degree of identity with the homologous sequences of the 2,4‐D‐degrading strains Achromobacter xylosoxidans subsp. denitrificans EST4002 (pEST4011), Burkholderia sp. RASC, Variovorax paradoxus TV1 (pTV1) and Burkholderia cepacia 2a (pIJB1), whereas the partial sequences of the tfdC, tfdD, tfdE and tfdF genes revealed a 96–100% degree of identity with the homologous sequences of the chlorobenzene‐utilizing strains Ralstonia eutropha NH9 (pENH91), Pseudomonas chlororaphis RW71 and Pseudomonas sp. P51 (pP51).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号