首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This study examined the detection of cellular poly(A) sequences in mouse liver sections by in situ hybridization using a 3H-labelled poly(dT) probe. Parameters examined included possible losses of target poly(A) sequences from sectioned cells, access of probe to target sequences, section thickness, hybridization conditions, autoradioigraphic efficiency, specific activity of probes and specificity of reaction. An improved protocol was devised that resulted in good preservation of histological detail in sectioned tissue blocks, and a calculated hybridization efficiency of 50%–100%. With the use of probes of defined sequence, the protocol should allow detection of unique mRNA sequences within single cells with an estimated sensitivity of 6–12 unique mRNA molecules per sectioned cell.  相似文献   

2.
This study examined the detection of cellular poly(A) sequences in mouse liver sections by in situ hybridization using a 3H-labelled poly(dT) probe. Parameters examined included possible losses of target poly(A) sequences from sectioned cells, access of probe to target sequences, section thickness, hybridization conditions, autoradiographic efficiency, specific activity of probes and specificity of reaction. An improved protocol was devised that resulted in good preservation of histological detail in sectioned tissue blocks, and a calculated hybridization efficiency of 50%-100%. With the use of probes of defined sequence, the protocol should allow detection of unique mRNA sequences within single cells with an estimated sensitivity of 6-12 unique mRNA molecules per sectioned cell.  相似文献   

3.
4.
5.
The two insulin receptor (IR) isoforms IR-A and IR-B are responsible for the pleiotropic actions of insulin and insulin-like growth factors. Consequently, changes in IR isoform expression and in the bioavailability of their ligands will impact on IR-mediated functions. Although alteration of IR isoform expression has been linked to insulin resistance, knowledge of IR isoform expression and mechanisms underlying tissue/cell-type-specific changes in metabolic disease are lacking. Using mouse models of obesity/diabetes and measuring the mRNA of the IR isoforms and mRNA/protein levels of total IR, we provide a data set of IR isoform expression pattern that documents changes in a tissue-dependent manner. Combining tissue fractionation and a new in situ mRNA hybridization technology to visualize the IR isoforms at cellular resolution, we explored the mechanism underlying the change in IR isoform expression in perigonadal adipose tissue, which is mainly caused by tissue remodelling, rather than by a shift in IR alternative splicing in a particular cell type, e.g. adipocytes.  相似文献   

6.
Deoxyguanosine kinase (dGK) is a nuclear gene product that catalyzes the phosphorylation of purine deoxyribonucleosides and their analogues. The human enzyme is located predominantly in the mitochondria, as shown by biochemical fractionation studies and in situ localization of the overexpressed recombinant protein. Here we describe the cloning of mouse dGK cDNA and the identification of a novel amino-terminally truncated isoform that corresponds to about 14% of the total dGK mRNA population in mouse spleen. In situ fluorescence assays suggest that the new isoform cannot translocate into the mitochondria and thus may represent a cytoplasmic enzyme. Expression of mouse dGK mRNA was highly tissue-specific and differed from the tissue distribution observed in humans. Recombinant mouse dGK showed similar specific activity and substrate specificity as compared with the human enzyme. The broad specificity, restricted tissue distribution, and location of mouse dGK in multiple cellular compartments raise new considerations with respect to the role of the individual deoxynucleoside kinases in nucleotide metabolism.  相似文献   

7.
Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.  相似文献   

8.
9.
Specimens no larger than 1.5 × 1.5 × 2 mm were frozen in liquid nitrogen and sectioned, while still frozen, with a refrigerated microtome. The frozen sections were dried in a vacuum, then pressed onto either Kodak NTB10 plates or onto slides which had been coated with Kodak NTB3 emulsion and dried. Radioactive mouse liver was used to test tissue preservation. Intestinal mucosa with Ha-labeled nuclei was used to test the quality of autoradiography. Good cytological detail was preserved in both tissues, with the autoradiographs interpretable at the cellular level.  相似文献   

10.
A rapid and sensitive in situ hybridization technique is described for the detection of mRNA sequences in 6-8-micron cryostat sections. The method incorporates the use of alpha-thio-35S-labelled nucleoside triphosphates for the generation of high-specific-activity DNA probes and a high-stringency washing procedure that virtually eliminates background without unduly compromising histological integrity. Whereas signal resolution is less than that observed using 3H probes, 35S-labelled probes are well-suited for experiments where resolution at the cellular level is required. The method has been applied to a study of the developmental regulation of glial fibrillary acidic protein (GFAP) mRNA expression in developing mouse brain. GFAP-specific sequences are first detectable after the second postnatal day, and thereafter rise to a level that is maintained throughout development and into adulthood. The distribution of GFAP-encoding sequences broadly reflects the known distribution of astrocytes, but the levels of mRNA within these cells vary by a surprisingly large amount depending on their location. For example, in adult animals, the astrocytes of the glial limitans contain an abundance of GFAP-specific mRNA that is higher than corresponding levels in astrocytes in the cerebellar white matter, whereas these cells in turn contain considerably more GFAP-specific mRNA than astrocytes in the gray matter of the cerebrum. Unexpectedly, parallel RNA blot transfer experiments show the existence of some GFAP-encoding mRNA size heterogeneity that is restricted to the first postnatal week.  相似文献   

11.
Time-of-flight secondary ion mass spectrometry (MS) provides secondary ion images that reflect distributions of substances with sub-micrometer spatial resolution. To evaluate the use of time-of-flight secondary ion MS to capture subcellular chemical changes in a tissue specimen, we visualized cellular damage showing a three-zone distribution in mouse liver tissue injured by acetaminophen overdose. First, we selected two types of ion peaks related to the hepatocyte nucleus and cytoplasm using control mouse liver. Acetaminophen-overdosed mouse liver was then classified into three areas using the time-of-flight secondary ion MS image of the two types of peaks, which roughly corresponded to established histopathological features. The ion peaks related to the cytoplasm decreased as the injury became more severe, and their origin was assumed to be mostly glycogen based on comparison with periodic acid–Schiff staining images and reference compound spectra. This indicated that the time-of-flight secondary ion MS image of the acetaminophen-overdosed mouse liver represented the chemical changes mainly corresponding to glycogen depletion on a subcellular scale. In addition, this technique also provided information on lipid species related to the injury. These results suggest that time-of-flight secondary ion MS has potential utility in histopathological applications.  相似文献   

12.
Conserved elements of apoptosis are also integral components of cellular differentiation. In this regard, p53 is involved in neurogenesis, being required for neurite outgrowth in primary neurons and for axonal regeneration in mice. Interestingly, demethylases regulate p53 activity and its interaction with co-activators by acting on non-histone proteins. In addition, the histone H3 lysine 27-specific demethylase JMJD3 induces ARF expression, thereby stabilizing p53 in mouse embryonic fibroblasts. We hypothesized that p53 interacts with key regulators of neurogenesis to redirect stem cells to differentiation, as an alternative to cell death. Specifically, we investigated the potential cross-talk between p53 and JMJD3 during mouse neural stem cell (NSC) differentiation. Our results demonstrated that JMJD3 mRNA and protein levels were increased early in mouse NSC differentiation, when JMJD3 activity was readily detected. Importantly, modulation of JMJD3 in NSCs resulted in changes of total p53 protein, coincident with increased ARF mRNA and protein expression. ChIP analysis revealed that JMJD3 was present at the promoter and exon 1 regions of ARF during neural differentiation, although without changes in H3K27me3. Immunoprecipitation assays demonstrated a direct interaction between p53 and JMJD3, independent of the C-terminal region of JMJD3, and modulation of p53 methylation by JMJD3-demethylase activity. Finally, transfection of mutant JMJD3 showed that the demethylase activity of JMJD3 was crucial in regulating p53 cellular distribution and function. In conclusion, JMJD3 induces p53 stabilization in mouse NSCs through ARF-dependent mechanisms, directly interacts with p53 and, importantly, causes nuclear accumulation of p53. This suggests that JMJD3 and p53 act in a common pathway during neurogenesis.  相似文献   

13.
14.
We describe two different techniques with plastic embedding in in situ hybridization histochemistry (ISHH). Their applicability was demonstrated by use of human placenta of the tenth gestational week and a tritium-labeled cDNA probe for the beta-subunit of hCG. In the first method, ISHH was performed on whole pieces of tissue (en bloc ISHH) pretreated with a weak acid solution, embedded in methacrylate, and sectioned at 3 microns for autoradiography. In the second technique, en bloc ISHH was carried out on tissue pre-treated with the weak acid and thereafter with detergent to further facilitate probe penetration. An acrylic resin was used for embedding, and section thickness was reduced to 1 microns. With both techniques, beta hCG cDNA/mRNA hybrids were localized exclusively to the syncytiotrophoblast (ST), in agreement with a previous study using sections of frozen placentas for hybridization to the same probe. However, owing to the higher resolution of the plastic sections the reliability of this localization was greatly increased. The number of autoradiographic grains over the acrylic resin 1-microns sections was found to be considerably higher than that over the methacrylate 3-microns sections. This study showed that treatment of tissue with detergent before en bloc ISHH, with subsequent embedding in acrylic resin and sectioning at 1 microns, gives high resolution in combination with a high signal-to-noise ratio after autoradiography. As the acrylic resin permits cutting of ultrathin sections, the results suggest that the technique may become useful for ISHH studies at the subcellular level.  相似文献   

15.
Short lived cytokine and proto-oncogene mRNAs are destabilized by an A+U-rich element (ARE) in the 3'-untranslated region. Several regulatory proteins bind to AREs in cytokine and proto-oncogene mRNAs, participate in inhibiting or promoting their rapid degradation of ARE mRNAs, and influence cytokine expression and cellular transformation in experimental models. The tissue distribution and cellular localization of the different AU-rich binding proteins (AUBPs), however, have not been uniformly characterized in the mouse, a model for ARE mRNA decay. We therefore carried out immunoblot and immunohistochemical analyses of the different AUBPs using the same mouse tissues. We show that HuR protein, a major AUBP that stabilizes the ARE mRNAs, is most strongly expressed in the thymus, spleen (predominantly in lymphocytic cells), intestine, and testes. AUF1 protein, a negative regulator of ARE mRNA stability, displayed strong expression in thymus and spleen cells within lymphocytic cells, moderate expression in the epithelial linings of lungs, gonadal tissues, and nuclei of most neurons in the brain, and little expression in the other tissues. Tristetraprolin, a negative regulator of ARE mRNA stability, displayed a largely non-overlapping tissue distribution with AUF1 and was predominantly expressed in the liver and testis. KH-type splicing regulatory protein, a presumptive negative regulator of ARE mRNA stability, was distributed widely in murine organs. These results indicate that HuR and AUF1, which functionally oppose each other, have generally similar distributions, suggesting that the balance between HuR and AUF1 is likely important in control of short lived mRNA degradation, lymphocyte development, and/or cytokine production, and possibly in certain aspects of neurological function.  相似文献   

16.
17.
Laminin promotes mast cell attachment   总被引:4,自引:0,他引:4  
Tissue mast cells often localize in close proximity to the basement membrane of endothelial cells and increase at sites of inflammation. The reason for this unique tissue distribution is unknown. We report here that both the murine mast cell line PT18 and mouse bone marrow-derived mast cells possess functional receptors for laminin, and exhibit adhesion, spreading and redistribution of histamine-containing granules on a laminin substratum. This adherence is enhanced in the presence of purified IL-3 and can be inhibited by antibodies to laminin and by antibodies to laminin receptors. Northern analysis showed a high level of mRNA for a 32-kDa laminin receptor in PT18 mast cells. Mouse bone marrow-derived cultures initially exhibited a low level of the mRNA expression. However, the expression of the laminin receptor mRNA is induced rapidly within 1 wk of culture with IL-3. Thus, mast cells exhibit functional laminin receptors that may explain the tissue distribution of mast cells and their accumulation at sites of tissue injury.  相似文献   

18.
Nucleic acids of intact biological tissues are rich in biological information. Whole‐mount in situ hybridization is a powerful technique to mine the wealth of data contained in DNAs or RNAs, especially mRNAs. However, there are no simple, rapid approaches to precisely locate mRNAs in whole‐mount tissues such as intact brains. By combining the penetration procedures of iDISCO with the signal amplification approach termed hybridization chain reaction, we herein developed a method for whole‐brain in situ hybridization at cellular resolution. Based on fluorescence tomography instead of tissue clearing, this method provides a simple, rapid way to precisely locate mRNAs in the whole brain with cytoarchitectonic landmarks. As a proof of principle, we investigated the exact distribution of Cre mRNA in a Thy1‐Cre mouse brain. We found high levels of Cre mRNA in most regions of the subcortical nuclei and the brain stem but comparatively low levels in major areas of the cerebral cortex. This method may have broad applications in studies of RNA function and its relations with diseases.   相似文献   

19.
Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (Kg= ∼130 Pa vs. Kw= ∼70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号