首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyper-expression of a secretory exoglucanase, Exg, encoded by the cex gene of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of recombinant Escherichia coli (Z.B. Fu, K.L. Ng, T.L. Lam, W.K.R. Wong, Cell death caused by hyper-expression of a secretory exoglucanase in Esherichia coli, Protein Expr. Purif. 42 (2005) 67-77). We propose here that the cell lysate ratio (Pre/Mat RQ) of the unprocessed precursor Exg protein (Pre-Exg) and its processed mature product (Mat-Exg) reflects the capacity of E. coli to secrete Exg. A Pre/Mat RQ of 20/80, designated the "Critical Value," was an important threshold measurement. A rise in the Pre/Mat RQ triggered a mass killing effect. The use of various secretion signal peptides did not improve the viability of cells expressing high levels of Pre-Exg under strong tac promoter control. However, use of the weaker vegG promoter in conjunction with a change in start codon of the spa leader sequence from ATG to TTG in a pM1vegGcexL plasmid construct resulted in a high level (0.9 U ml(-1)) of excreted Exg in shake-flask cultures. This was 50% higher than the best result obtained from plasmid construct lacUV5par8cex, using the lacUV5 promoter and the ompA leader sequence. Variations in the excreted Exg activities were attributable to differences in the Pre/Mat RQ values of the induced cultures harboring pM1vegGcexL and lacUV5par8cex. These values were 18/82 and 10/90, respectively. Employing fed-batch cultivation in two-liter fermentors, an induced JM101(pM1vegGcexL) culture yielded 4.5 U ml(-1) of excreted Exg, which was over six fold greater that previously reported. Our results illustrate the successful application of the Pre/Mat RQ ratio as a guide to the attainment of a maximum level of secreted/excreted Exg.  相似文献   

2.
An improved procedure for the fermentation and purification of human epidermal growth factor (hEGF) was developed. Recombinant Escherichia coli HB-101 [lacUV5omp08hEGF] harboring plasmid lacUV5omp08hEGF encoding hEGF was used in fermentation to increase levels of hEGF. Medium composition, and the levels of inoculum, inducer (isopropyl-beta-D-thiogalactoside) and ampicillin were optimized with respect to volumetric fermentation of hEGF. As a result, the hEGF concentration reached a high value of 242 mg l(-1) and the amount of heterogeneous protein decreased by 62% compared with that before optimization in batch fermentation. High-quality hEGF was purified from the fermentation culture by centrifugation, salting-out, resuspension, recentrifugation and finally gel chromatography on a Grad-iFrac System using Sephadex G-50 superfine. The purity of hEGF and the total yield were more than 94% and higher than 36%, respectively, and SDS-PAGE of the purified hEGF demonstrated a single band corresponding to an hEGF standard. In particular, a very important phenomenon was found, i.e. that the amount of heterogenous protein in fermentation broths cultured in media with high concentrations of lactose is far less than that cultured in media with high concentrations of glucose.  相似文献   

3.
Production of toluene cis-glycol (TCG) was investigated using recombinant Escherichia coli strains that express toluene dioxygenase under the tac promoter. E. coli TG2 was selected as the host for the recombinant plasmid, pTAC365, because the TCG yield was 64% higher than with strain JM105 as the host. By using fed-batch culture, TCG production could be improved by 4.4-fold compared with batch cultures, with a toluene vapor feed. A further improvement of 1.2-fold was obtained by using a two-liquid phase culture system, but the improvement was 1.6-fold when the feed rate of toluene vapor was reduced by 75%. When the period of growth in fed-batch culture was extended and the reduced vapor feed was used, the maximum TCG concentration increased to 4 g/l, an overall improvement of 10-fold compared with the batch culture system used initially. However, product consumption was observed during the late stages of fed-batch growth and in stationary phase, resulting in the formation of o-cresol, 3-methylcatechol and benzyl alcohol. We conclude that the key to optimizing TCG production by recombinants is to prolong growth of the cells to ensure sustained growth-linked product formation, and to optimize the supply of the toxic substrate, toluene, but further work is needed to eliminate by-product formation.  相似文献   

4.
Myrosinases (thioglucoside glucohydrolase, EC 3.2.3.1) are able to hydrolyse glucosinolates in natural plant products. In Arabidopsis thaliana three different genes with different tissue-specific expressions and distribution patterns encode myrosinases. cDNAs of myrosinase genes (TGG1 and TGG2) were isolated from A. thaliana and expressed in Escherichia coli and Pichia pastoris. The enzyme activities of myrosinase TGG1 and TGG2 genes expressed in P. pastoris were higher than those expressed in E. coli. Among six glucosinolates tested for specificity to myrosinases TGG1 and TGG2, the suitable substrates for these two genes expressed in P. pastoris and E. coli were sinigrin, gluconapin, glucobrassicanapin and glucoraphanin. Treatment of sinigrin with myrosinases excreted from reconstructed E. coli and P. pastoris with TGG1 and TGG2 genes showed strong fungicidal effects on mycelial growth of Rhizoctonia solani AG-4, Sclerotium rolfsii, and Pythium aphanidermatum. This study suggests that the combination of glucosinolate with myrosinases excreted from the reconstructed microbes may be of potential for control of soil-borne diseases.  相似文献   

5.
Glucose binding protein (GBP) from Escherichia coli has been widely used to develop minimally invasive glucose biosensors for diabetics. To develop a cell-based glucose biosensor, it is essential to functionally display GBP on the cell surface. In this study, we designed a molecular structure to display GBP on the outer membrane of E. coli. We fused GBP with the first nine N-terminal residues of Lpp (major E. coli lipoprotein) and the 46–150 residues of OmpA (an outer membrane protein of E. coli). With this molecular design, we have successfully displayed GBP on the surface of E. coli. Using FITC-conjugated Dextran, we demonstrated that glucose’s binding sites of surface-displayed GBP were accessible to glucose. Furthermore, we showed that glucose transport in a GBP-deficient E. coli NM303 could be restored by displaying GBP on the surface of NM303. 0.51 h−1 of specific growth rate was attained for NM303/pESDG grown in M9 minimal medium supplemented with 2 g/l glucose, whereas no growth was observed for NM303 in the same medium. Both NM303 and NM303/pESDG grew in M9 medium supplemented with 1 mM of fucose. Because cell surface is an interface between intracellular and extracellular molecular events, this technique paves a way to develop cell-based glucose biosensors.  相似文献   

6.
A series of methionine analogues have been synthesized as inhibitors of methionyl-tRNA synthetase and evaluated for their inhibitory activities of E. coli methionyl-tRNA synthetase and bacterial growth. Among them, -methionine hydroxamate 20 has proved to be the best inhibitor of the enzyme with Ki = 19 μM and showed a growth inhibition against E.coli JM 109, P. vulganis 6059 and C. freundii 8090.  相似文献   

7.
Human β-defensin-2 (hBD2) is a short cationic peptide with a broad antimicrobial spectrum. The coding sequence of hBD2 was cloned into pET-32a (+) to construct a fusion expression plasmid, pET32–hBD2, which was transformed into E. coli BL21 (DE3) for expression. The cultivation parameters of the expression vector harboring strain were optimized to produce the fusion protein in soluble form efficiently and to avoid the formation of insoluble inclusion bodies. The optimal conditions were determined as following: cultivation at 28 °C in MBL medium, induction at middle stage of exponential growth with 0.8 mM IPTG, and post-induction expression for 8 h. Under the above conditions, a high percentage of the target fusion protein (≥92.3%) was expressed in soluble form and the volumetric productivity of soluble fusion protein reached 1.3 g/l. The culture process was successfully scaled up in a 10 l bench-top fermentor.  相似文献   

8.
9.
Batch and fed-batch production of recombinant human epidermal growth factor (hEGF) was studied in an E. coli secretary expression system. By using MMBL medium containing 5 g/L glucose, controlling the temperature at 32 degrees C and maintaining the dissolved oxgen level over 20% saturation, a high yield of hEGF (32 mg/L) was obtained after an 18 hr batch cultivation with 0.2 mM IPTG induction at mid-log phase. Three different glucose feeding strategies were employed to further improve hEGF productivity in a bench top fermentor. Compared with the batch results, hEGF yield was improved up to 25.5% or 28.1%, respectively by intermittent or pH-stat glucose feeding, and up to 150% improvement of hEGF production was achieved by constant feeding of 200 g/L glucose solution at a rate of 0.11 mL/min. The effects of further combined feeding with other medium components and inducer on hEGF yield were also examined in the benchtop fermentor. This work is very helpful to further improve the productivity of extracellular hEGF in the recombinant E. coli system.  相似文献   

10.
Geometry of tapered fiber sensors critically affects the response of an evanescent field sensor to cell suspensions. Single-mode fibers (nominally at 1300 nm) were tapered to symmetric or asymmetric tapers with diameters in the range of 3–20 μm, and overall lengths of 1–7 mm. Their transmission characteristics in air, water and in the presence of Escherichia coli (JM101 strain) at concentrations of 100, 1000, 7000 and 7 million cells/mL were measured in the 400–800 nm range and gave rich spectral data that lead to the following conclusions. (1) No change in transmission was observed due to E. coli with tapers that showed no relative change in transmission in water compared to air. (2) Tapers that exhibited a significant difference in transmission in water compared to air gave weak response to the presence of the E. coli. Of these, tapers with low waist diameters (6 μm) showed sensitivity to E. coli at 7000 cells/mL and higher concentration. (3) Tapers that showed modest difference in water transmission compared to air, and those that had small waist diameters gave excellent response to E. coli at 100–7000 cells/mL. In addition, mathematical modeling showed that: (1) at low wavelength (470 nm) and small waist diameter (6 μm), transmission with water in the waist region is higher than in air. (2) Small changes in waist diameter (0.05 μm) can cause larger changes in transmission at 470 nm than at 550 nm at waist diameter of 6 μm. (3) For the same overall geometry, a 5.5 μm diameter taper showed larger refractive index sensitivity compared to a 6.25 μm taper at 470 nm.  相似文献   

11.
12.
In this study, 2H and 31P-NMR techniques were used to study the effects of trehalose and glycerol on phase transitions and lipid acyl chain order of membrane systems derived from cells of E. coli unsaturated fatty acid auxotroph strain K1059, which was grown in the presence of [11,11-2H2]-oleic acid or [11,11-2H2]-elaidic acid. From an analysis of the temperature dependence of the quadrupolar splitting it could be concluded that neither 1 M trehalose or glycerol generally had any significant effect on the temperature of the lamellar gel to liquid-crystalline phase transition. In the case of the oleate-containing hydrated total lipid extract, glycerol but not trehalose caused a 5°C increase of this transition temperature. In general, both cryoprotectants induced an ordering of the acyl chains in the liquid-crystalline state. Trehalose and glycerol both decrease the bilayer to non-bilayer transition temperature of the hydrated lipid extract of oleate-grown cells by about 5°C, but only trehalose in addition induces an isotropic to hexagonal (HII) phase transition. In the biological membranes, trehalose and not glycerol destabilised the lipid bilayer, and in the case of the E. coli spheroplasts, part of the induced non-bilayer structures is ascribed to a hexagonal (HII) phase in analogy with the total lipids. Interestingly, 1 mM Mg2+ was a prerequisite for the destabilisation of the lipid bilayer. In the hydrated total lipid extract of E. coli grown on the more ordered elaidic acid, both transition temperatures were shifted about 20°C upwards compared with the oleate-containing lipid, but the effect of trehalose on the lipid phase behaviour was similar. The bilayer destabilising ability of trehalose might have implications for the possible protection of biological systems by (cryo-)protectants during dehydration, in that protection is unlikely to be caused by preventing the occurrence of polymorphic phase transitions.  相似文献   

13.
The Rhodotorula glutinis epoxide hydrolase, Eph1, was produced in the heterologous host Escherichia coli BL21(DE3) in order to develop a highly effective epoxide hydrolysis system. A 138-fold increase in Eph1 activity was found in cell extracts of the recombinant E. coli when compared to cell extracts of Rhodotorula glutinis, despite the formation of Eph1 inclusion bodies. Optimization of cultivation conditions and co-expression of molecular chaperones resulted in a further increase in activity and a reduction of the inclusion bodies formation, respectively. Compared to Rhodotorula glutinis cells and cell extracts, a total increase in Eph1 activity of over 200 times was found for both Escherichia coli cells and crude enzyme preparations of these cells. The improved conditions for recombinant Eph1 production were used to demonstrate the Eph1-catalysed kinetic resolution of a new Eph1 substrate, 1-oxaspiro[2.5]octane-2-carbonitrile.  相似文献   

14.
2-Oxoglutarate dehydrogenase (lipoamide) [OGDH or E1o: 2-oxoglutarate: lipoamide 2-oxidoreductase (decarboxylating and acceptor-succinating); EC 1.2.4.2] is a component enzyme of the 2-oxoglutarate dehydrogenase complex. Salmonella typhimurium gene encoding OGDH (ogdh) has been cloned in Escherichia coli. The libraries were screened for the expression of OGDH by complementing the gene in E. coli E1o-deficient mutant. Three positive clones (named Odh-3, Odh-5 and Odh-7) contained the identical 2.9 kb Sau3AI fragment as determined by restriction mapping and Southern hybridization, and expressed OGDH efficiently and constitutively using its own promoter in the heterologous host. This gene spans 2878 bases and contains an open reading frame of 2802 nucleotides encoding a mature protein of 927 amino acid residues (Mr=110,000). The comparison of the deduced amino acid sequence of the cloned OGDH with E. coli OGDH shows 91% sequence identity. To localize the catalytic domain responsible for E. coli E1o-complementation, several deletion mutants lacking each portion of the ogdh gene were constructed using restriction enzymes. From the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, a polypeptide which showed a complementation activity with an Mr of 30,000 was detected. The catalytic domain was localized in N-terminal region of the gene. Therefore, this is a first identification of the catalytic domain in bacterial ogdh gene.  相似文献   

15.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

16.
Genetic engineering has improved the product yield of a variety of compounds by overexpressing, inactivating, or introducing new genes in microbial systems. The production of flavor-enhancing ester compounds is an emerging area of heterologous gene expression for desired product yield in Escherichia coli. Isoamyl acetate, butyl acetate, ethyl acetate, and butyl butyrate are reported here to be produced by expressing Saccharomyces cerevisiae genes ATF1 or ATF2 and the strawberry gene SAAT in E. coli when the appropriate substrates are provided. Increasing the concentration of alcohol added to the reaction generally resulted in increased ester production. ATF1 expression was found to produce more isoamyl acetate and butyl acetate than ATF2 expression or SAAT expression in the strains and culture conditions examined. Additionally, SAAT expression resulted in greater isoamyl acetate and butyl acetate production than ATF2 expression. Butyl butyrate is produced by cell-free extracts of E. coli harboring SAAT but not ATF1 or ATF2.  相似文献   

17.
The scope of the biotransformation of 2-pyridone- and 2-quinolone-derived compounds by recombinant whole-cells of E. coli JM109(DE3)(pDTG141) expressing the naphthalene-dioxygenase system from Pseudomonas sp. NCIB 9816-4 was explored, using a series of N- and C-substituted derivatives. Among them, only the N-methyl substituted compounds were good substrates for a regio- and stereoselective dihydroxylation reaction leading to cis-dihydroxydihydro pyridone derivatives, corresponding to the general pattern expected for this enzyme. In the absence of dihydroxylation reactions, N-dealkylations and monohydroxylations on external methyl groups were observed.  相似文献   

18.
A bacterial flavin-containing monooxygenase (FMO) gene was cloned from Methylophaga aminisulfidivorans MPT, and a plasmid pBlue 2.0 was constructed to express the bacterial fmo gene in E. coli. To increase the production of bio-indigo, upstream sequence size of fmo gene was optimized and response surface methodology was used. The pBlue 1.7 plasmid (1686 bp) was prepared by the deletion of upstream sequence of pBlue 2.0. The recombinant E. coli harboring the pBlue 1.7 plasmid produced 662 mg l−1 of bio-indigo in tryptophan medium after 24 h of cultivation in flask. The production of bio-indigo was optimized using a response surface methodology with a 2n central composite design. The optimal combination of media constituents for the maximum production of bio-indigo was determined as tryptophan 2.4 g l−1, yeast extract 4.5 g l−1 and sodium chloride 11.4 g l−1. In addition, the optimum culture temperature and pH were 30 °C and pH 7.0, respectively. Under the optimized conditions mentioned above, the recombinant E. coli harboring pBlue 1.7 plasmid produced 920 mg of bio-indigo per liter in optimum tryptophan medium after 24 h of cultivation in fermentor. The combination of truncated insert sizes and culture optimization resulted in a 575% increase in the production of bio-indigo.  相似文献   

19.
To obtain a recombinant Rhodococcus or Nocardia with not only higher enzymatic activity but also better operational stability and product-tolerance ability for bioconversion of acrylamide from acrylonitrile, an active and stable expression system of nitrile hydratase (NHase) was tried to construct as the technical platform of genetic manipulations. Two NHase genes, NHBA and NHBAX, from Nocardia YS-2002 were successfully cloned, based on bioinformatics design of PCR primers, and inserted into plasmid pUC18 and pET32a, respectively. Then, two recombinant Escherichia coli strains, JM105 (pUC18-NHBA) and BL21 (DE3) (pET32a-NHBAX) were constructed and their expressions of NHase were focused. The induction results showed that there was either no NHase activity in JM105 (pUC18-NHBA), or as low as 0.04 U (1 U=1 μmol acrylamide min−1 mg−1 dry cell) in BL21 (DE3) (pET32a-NHBAX). SDS-PAGE results showed that the -subunit of NHBA and NHBAX could not be efficiently expressed in both recombinant E. coli strains. The novel Pichia pastoris system was also applied to express NHase, but the expression level remained quite low (0.5–0.6 U) and the protein was unstable. For solving this problem, a possible genetic strategy, site-directed mutagenesis of the -subunit of the NHase was carried out. After the successful mutagenesis of the original rare start codon gtg into atg, a new recombinant strain, E. coli XL1-Blue (pUC18-NHBAM), was screened and the NHase activity stably reached as high as 51 U under the same induction conditions.  相似文献   

20.
The microbiological Baeyer–Villiger oxidation of various substituted 1-indanones is described. Three bacterial strains have been explored: an E. coli TOP10 [pQR 239] constructed to overexpress the cyclohexanone monoxygenase (CHMO) of Acinetobacter calcoaceticus NCIMB 9871, an E. coli TOP10 [hapE] strain recently constructed to overexpress 4-hydroxyacetophenone monoxygenase (HAPMO) of Pseudomonas fluorescens ACB and the wild type Pseudomonas sp. NCIMB 9872 strain known to metabolise cyclopentanone. This last strain oxidised some of the proposed substrates, leading to the corresponding lactones with good to excellent yields depending on the aromatic ring substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号