首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constructed a gene library from a murine cell line with amplified dihydrofolate reductase (dhfr) genes by inserting random segments of DNA into lambda Ch4A. From this library, the dhfr gene and 30 kilobase pairs of surrounding DNA were cloned, and the restriction map was determined. All of the coding regions were sequenced and show that the gene spans a total of 31 kilobase pairs and has five intervening sequences in the coding portion of the gene. In addition, two classes of variant dhfr genes were found in the amplified line, which were amplified and present at levels of 10 to 30% of the normal dhfr genes. Numerous repeated sequences were located throughout the gene region, some of which share homology with previously defied families of repeats.  相似文献   

2.
By the use of a highly sensitive mapping procedure allowing the identification of the start sites of DNA replication in single-copy genomic regions of untreated, exponentially growing cultured cells (M. Giacca, L. Zentilin, P. Norio, S. Diviacco, D. Dimitrova, G. Contreas, G. Biamonti, G. Perini, F. Weighardt, S. Riva, and A. Falaschi, Proc. Natl. Acad. Sci. USA 91:7119-7123, 1994), the pattern of DNA replication of the Chinese hamster dihydrofolate reductase (DHFR) gene domain was investigated. The method entails the purification of short stretches of nascent DNA issuing from DNA replication origin regions and quantification, within this sample, of the abundance of different adjacent segments by competitive PCR. Distribution of marker abundance peaks around the site from which newly synthesized DNA had emanated. The results obtained by analysis of the genomic region downstream of the DHFR single-copy gene in asynchronous cultures of hamster CHO K1 cells are consistent with the presence of a single start site for DNA replication, located approximately 17 kb downstream of the gene. This site is coincident with the one detected by other studies using different techniques in CHO cell lines containing an amplified DHFR gene domain.  相似文献   

3.
We describe a sensitive method for mapping replication initiation sites near regions of sequenced genomic DNA in vivo. It is based on selective amplification of sets of segments in purified nascent DNA strands and subsequent determination of the lengths of these strands required to include each member of the set. We demonstrate the ability of this method to accurately map a well-defined origin, that of replicating SV40 DNA. Pulse-labeled DNA from infected CV-1 cells was size-fractionated on an alkaline sucrose gradient and newly-synthesized strands purified by immunoprecipitation using anti-BrdU antibodies. Three pairs of synthetic oligonucleotide primers were used to amplify three SV40 segments, using the polymerase chain reaction (PCR), at known distances from the origin. Lengths of the nascent DNA strands that allow amplification were determined by hybridization to probes homologous to the amplified segments and used to calculate position of the origin. Experiments with a mix of SV40 and human HeLa cell DNA demonstrate the applicability of the method to mapping origins present at the level of single-copy genomic sequences in mammalian cells.  相似文献   

4.
Overlapping recombinant lambda 1059 phages carrying regions of the dhfr locus from the amplified Chinese hamster ovary (CHO) cell clone MK42 have been isolated. In addition, dhfr cDNAs from this cell line have been cloned into plasmid pBR322. Restriction analysis of these recombinant molecules has led to a map of the Chinese hamster dhfr gene. This gene has a minimum size of 26 kb and contains six exons as defined by hybridization to a combination of mouse and CHO cDNA probes. The latter probes reveal 3' exonic sequences that are not present in mouse cDNA. The CHO dhfr gene thus extends about 700 bp further 3' than in the mouse, consistent with the larger size of the hamster mRNA. At least five intervening sequences are present, of approximate sizes: 0.3, 2.5, 8.6, 2.6 and 9.4 kb. Four sequences from highly repeated families are situated in introns within the dhfr gene. The overall structure of this gene is strikingly similar to that of the mouse. Evolutionary conservation of interrupted gene structure among mammals thus extends to genes that code for household enzymes as well as specialized or structural proteins.  相似文献   

5.
Replication time of interspersed repetitive DNA sequences in hamsters   总被引:2,自引:0,他引:2  
The replication time of 34 hamster genomic DNA segments containing interspersed repeat sequences was determined by probing the cloned segments with nick-translated early- and late-replicating hamster DNA. One-third of these cloned families replicated early, one-third replicated late, and one-third replicated without temporal bias. 19 different inserts from these clones along with the SINE, Alu, and the LINE, A36Fc, were used to probe Southern blots of early- and late-replicating hamster or human DNA. We report long interspersed repeats, LINEs, are selectively partitioned into late-replicating DNA and are often concertedly hypomethylated, while short interspersed repeats, SINEs, are selectively partitioned into early-replicating DNA. For some interspersed repeat families, this partitioning is complete or almost complete. The CCGG frequency is very low in late-replicating DNA. The mammalian chromosome's pattern of early-replicating R-bands and late-replicating G-bands reflects a differential distribution of LINEs and SINEs.  相似文献   

6.
J Nathans  D S Hogness 《Cell》1983,34(3):807-814
We have isolated cDNA clones generated from the mRNA encoding the opsin apoprotein of bovine rhodopsin and used these cDNAs to isolate genomic DNA clones containing the complete opsin gene. Nucleotide sequence analysis of the cloned DNAs has yielded a complete amino acid sequence for bovine rhodopsin and provided an intron-exon map of its gene. The mRNA homologous sequences in the 6.4 kb gene consist of a 96 bp 5' untranslated region, a 1044 bp coding region, and a surprisingly long approximately 1400 bp 3' untranslated region, and are divided into five exons by four introns that interrupt the coding region. Secondary structure analysis predicts that the bovine rhodopsin chain, like that of bacteriorhodopsin, contains seven transmembrane segments. Interestingly, three of the four introns are immediately distal to the codons for three of these segments, and one of these introns marks the boundary between the C-terminal domain and a transmembrane domain.  相似文献   

7.
8.
L M Erickson  H S Kim  N Maeda 《Genomics》1992,14(4):948-958
To investigate the nature of the recombination that generated the haptoglobin three-gene cluster in Old World primates, we sequenced the region between the second gene (HPR) and the third gene (HPP) in chimpanzees (15 kb), as well as the region 3' to the cluster in humans (14 kb). Comparison to the previously sequenced human haptoglobin (HP) and HPR genes showed that the junction point between HP and HPR in humans (junction 1) was not identical to the junction point between the HPR and HPP genes of the chimpanzee (junction 2). An Alu sequence was found at each junction, but both Alu sequences lacked short direct repeats of the flanking genomic DNA. The lack of direct repeats implies that both junction Alu sequences are the products of recombination between different Alu elements. In addition, other insertion and deletion events are clustered in the regions near the junction Alu sequences. The observation that Alu sequences define the junctions between genes in the haptoglobin gene cluster emphasizes the importance of Alu sequences in the evolution of multigene families.  相似文献   

9.
10.
P J Wejksnora 《Gene》1985,33(3):285-292
We have examined the ribosomal RNA (rRNA) genes of the Chinese hamster ovary (CHO) cell line. A partial EcoRI library of genomic CHO DNA was prepared using lambda Charon-4A. We isolated two recombinants containing the region transcribed as 45S pre-rRNA and 13 kb of external spacer flanking 5' and 3' to the transcribed region. These sequences show restriction site homology with the vast majority of the genomic sequences complementary to rRNA. In addition to this form of rDNA, Southern blot analysis of EcoRI-cut CHO genomic DNA reveals numerous minor fragments ranging from 2 to 19 kb which are complementary to 18S rRNA. We isolated one clone which contains the 18S rRNA gene and sequences 5' which appear to contain length heterogeneity within the non-transcribed spacer region. We have nine additional cloned EcoRI fragments in which the homology with 18S rRNA is limited to a 0.9-kb EcoRI-HindIII fragment. This EcoRI-HindIII fragment is present in each of the cloned EcoRI fragments, and is flanked on both sides by apparently nonribosomal sequences which bear little restriction site homology with each other or the major cloned rDNA repeat.  相似文献   

11.
12.
Genomic representation of the Hind II 1.9 kb repeated DNA.   总被引:19,自引:10,他引:9       下载免费PDF全文
The genomic representation and organization of sequences homologous to a cloned Hind III 1.9 kb repeated DNA fragment were studied. Approximately 80% of homologous repeated DNA was contained in a genomic Hind III cleavage band of 1.9 kb. Double digestion studies indicated that the genomic family, in the majority, followed the arrangement of the sequenced clone, with minor restriction cleavage variations compatible with a few base changes. Common restriction sites external to the 1.9 kb sequence were mapped, and hybridization of segments of the cloned sequence indicated the 1.9 kb DNA was itself not tandemly repeated. Kpn I bands which were homologous to the sequence contained specific regions of the repeat, and the molecular weight of these larger fragments could be simply explained. Mapping of common external restriction sites indicated that in some but not all cases the repeat could be organized in larger defined blocks of greater than or equal to 5.5 kb. In some instances, flanking regions adjacent to the repeat may contain common DNA elements such as other repeated DNA sequences, or possibly rearranged segments of the 1.9 kb sequence. It is suggested that although the 1.9 kb sequence is not strictly contiguous, at least some of these repeated sequences in the human genome are arranged in clustered or intercalary arrays. A region of the 1.9 kb sequence hybridized to a mouse repeated DNA, indicating homology beyond the primates.  相似文献   

13.
We have identified and sequenced two members of a chicken middle repetitive DNA sequence family. By reassociation kinetics, members of this family (termed CRl) are estimated to be present in 1500-7000 copies per chicken haploid genome. The first family member sequenced (CRlUla) is located approximately 2 kb upstream from the previously cloned chicken Ul RNA gene. The second CRl sequence (CRl)Va) is located approximately 12 kb downstream from the 3' end of the chicken ovalbumin gene. The region of homology between these two sequences extends over a region of approximately 160 base pairs. In each case, the 160 base pair region is flanked by imperfect, but homologous, short direct repeats 10-15 base pairs in length. When the CRl sequences are compared with mammalian ubiquitous interspersed repetitive DNA sequences (human Alu and Mouse Bl families), several regions of extensive homology are evident. In addition, the short nucleotide sequence CAGCCTGG which is completely conserved in ubiquitous repetitive sequence families from several mammalian species is also conserved at a homologous position in the chicken sequences. These data imply that at least certain aspects of the sequence and structure of these interspersed repeats must predate the avian-mammalian divergence. It seems that the CRl family may possibly represent an avian counterpart of the mammalian ubiquitous repeats.  相似文献   

14.
Isolation and structure of a rhodopsin gene from D. melanogaster   总被引:45,自引:0,他引:45  
C S Zuker  A F Cowman  G M Rubin 《Cell》1985,40(4):851-858
Using a novel method for detecting cross-homologous nucleic acid sequences we have isolated the gene coding for the major rhodopsin of Drosophila melanogaster and mapped it to chromosomal region 92B8-11. Comparison of cDNA and genomic DNA sequences indicates that the gene is divided into five exons. The amino acid sequence deduced from the nucleotide sequence is 373 residues long, and the polypeptide chain contains seven hydrophobic segments that appear to correspond to the seven transmembrane segments characteristic of other rhodopsins. Three regions of Drosophila rhodopsin are highly conserved with the corresponding domains of bovine rhodopsin, suggesting an important role for these polypeptide regions.  相似文献   

15.
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non-coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5' upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at -15 kb. We detected several stretches of homology within the first 30 kb 5' tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5' upstream regulatory sequence found between -8 and -10 kb of the human tyrosinase locus (termed h5'URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at -9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue-specific enhancer in the h5'URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5'URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.  相似文献   

16.
The sequences of a 51-kb region containing the cluster of five rat gamma-crystallin-coding genes (CRYG) and of a 7-kb region surrounding the sixth rat CRYG gene were determined. Approximately 78% of the total sequence represents intergenic DNA. We also sequenced 22 kb of DNA from the human CRYG gene cluster. All CRYG genes are associated with CpG-rich regions. The sequence similarity between the human and rat gene regions drops sharply (to 65%) in intronic and 3'-flanking regions but decreases only gradually in the 5'-flanking region. Highly conserved regions (greater than 80%) are found as far upstream as 1.5 kb. Overall intergenic distances are conserved. The human region contains much more repetitive DNA (24% vs. 10%) but less simple-sequence (sps) DNA (0.7% vs. 4%) than the rat region. Almost all repeats and spsDNA elements are located in the intergenic region. The location of repetitive and spsDNA differs between the orthologous regions and these elements were probably inserted after the evolutionary separation of rat and man. The Alu repeats in man and the B3 repeats in the rat are close copies of their respective consensus sequences and bordered by virtually perfect repeats. In contrast, the B1 and B2 repeats in the rat have diverged considerably from the consensus sequence and the surrounding direct repeats are usually imperfect. Thus the dispersion of the B1 and B2 repeats in the rat probably preceded that of the B3 repeats. Within the rat genomic region the spacing of Z-DNA elements is surprisingly regular, they are located about 12 kb apart. A search for putative matrix-associated regions suggests that the rat CRYG gene cluster is organized into two chromosomal domains.  相似文献   

17.
A cloned DNA segment 1.25 kilobases (kb) upstream from the joining segments of the human heavy chain immunoglobulin gene revealed extensive polymorphic variation at this locus, and the polymorphic pattern was stably transmitted to the next generation. Genomic restriction analysis showed that the polymorphism was caused by insertions/deletions within an MspI/BamHI fragment. Sequencing of one allele, 848 base pairs (bp) long, revealed eleven 50-base-pair tandem repeats. A second allele, 648 bp long, was cloned from a human genomic cosmid library, sequenced, and found to contain four fewer repeats than the first allele. A survey of 186 chromosomes from unrelated individuals of primarily northern European descent revealed at least six alleles.  相似文献   

18.
19.
Several complementary procedures were used to identify and characterize DNA sequences which are repeated within a 44 kilobase (kb) segment of rabbit chromosomal DNA containing four different rabbit β-like globin genes (β1–β4). Cross-hybridization between cloned DNAs from different regions of the gene cluster indicates the presence of a complex array of repeat sequences interspersed with the globin genes. We classified 20 different repeat sequences into five families whose members cross-hybridize. Electron microscopy was used to determine the location, size and relative orientations of many of the repeat sequences. Both direct and inverted repeats were identified, with sizes ranging from 140 to 1400 base pairs (bp). Each of the four closely linked globin genes is flanked by at least one pair of inverted repeats of 140–400 bp, and the entire set of four genes is flanked by an inverted repeat of 1400 bp. Two of the five repeat families contain repeat sequences of different sizes. We found that the smaller sequence elements can occur individually or in association with the larger repeat sequences, suggesting that the larger repeats may be composed of more than one smaller repeat sequence. The restriction fragments containing the intracluster repeats also contain sequences which are repeated many times in total rabbit genomic DNA, but it is not known whether the genomic and intracluster repeats are the same sequences. The results provide the first demonstration of the relationship between single-copy and repetitive DNA sequences in a large segment of chromosomal DNA containing a well characterized set of developmentally regulated genes.  相似文献   

20.
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non‐coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5′ upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at ?15 kb. We detected several stretches of homology within the first 30 kb 5′ tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5′ upstream regulatory sequence found between ?8 and ?10 kb of the human tyrosinase locus (termed h5′URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at ?9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue‐specific enhancer in the h5′URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5′URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号