首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphisms have previously been reported for the C mu, C alpha, C epsilon, and C gamma genes of the immunoglobulin heavy-chain (IGH) gene cluster. Here we report polymorphisms of the IGH C delta gene region, observed using the enzymes ApaI, AvaII, TaqI, and XbaI. The TaqI and XbaI polymorphisms were used in an investigation of linkage disequilibrium throughout the cluster of constant-region genes. The TaqI polymorphism, located 5' to the C delta gene, is in linkage disequilibrium with a polymorphism of the C mu switch region. The XbaI polymorphism, which is in the vicinity of the C delta 2 exon, is not strongly associated with any other polymorphisms, including the TaqI polymorphism and the Gm polymorphism of C gamma 3. Although there is a high degree of association between most genes of the IGH region, there is a lack of association between C delta and C gamma 3, which may indicate a hot spot for recombination.  相似文献   

2.
We have characterized 10 VH polymorphic loci of the VH2, VH3, VH4, and VH5 families. Eight of 10 VH polymorphisms were found to be insertion/deletion polymorphisms, probably the result of nonhomologous recombination over the course of evolution of the current human VH repertoire. The 10 VH polymorphic loci were analyzed in 10 three-generation and 10 two-generation Canadian caucasoid families. Linkage disequilibrium (allelic association) was measured between pairs of VH polymorphic loci, and 12 significant associations were found. The degree of linkage disequilibrium measured between IGH polymorphic loci was then compared with the physical distance separating the loci. The physical distance between IGH polymorphic loci does not entirely determine the degree of linkage disequilibrium between polymorphic loci. Two regions, one in the VH region (between VH3f-2 and VH5-2 and one in the CH region (between C delta and C gamma 3), were found to have linkage disequilibrium values approximately 1/3,000 of that observed in other portions of the IGH region. The previous identification of recombinants in the C delta-to C gamma 3 region indicates that these areas of low linkage disequilibrium are consistent with the presence of recombination hot spots. The observed high amount of recombination in the subtelomeric portion of chromosome 14 therefore appears to be the result of specific hot spots for recombination, rather than a general increase in recombination in this region.  相似文献   

3.
Subtelomeric regions of human chromosomes are the sites of increased meiotic recombination and have a male-to-female recombination ratio that is higher than elsewhere in the genome. We isolated two novel, polymorphic CA repeat markers from the distal part of the immunoglobulin heavy chain gene cluster, approximately 90 and 200 kb from the telomere of chromosome 14q. The 14q telomere was unambiguously located by physical mapping of telomeric YACs andBal31 exonuclease digestion of genomic DNA. We then constructed haplotypes using genotype data from these markers and data from sCAW1 (D14S826) for use as a highly polymorphic genetic marker. Linkage analysis using the 40 pedigree CEPH reference panel and genotype data from these and other loci physically mapped to the terminal 1.5 Mb of chromosome 14q revealed an apparent increase in meiotic recombination within this region, relative to the average rate for the genome. Further, we found that recombination was higher in females than in males, indicating that the subtelomeric region of 14q differs from other human subtelomeric regions.  相似文献   

4.
The genetic linkage map of chromosome 14q32 contains 11 loci which span a distance of more than 60 cM. We have assigned 10 of these loci and the AKT1 proto-oncogene to segments of 14q32, using breakpoints derived from four independent chromosomal deletions or rearrangements. The most telomeric breakpoint was found in a proband (HSC 6) carrying a ring-14 chromosome. HSC 6 is monosomic for the distal part of 14q32, which contains the immunoglobulin heavy-chain locus (IGH), and random markers D14S20, D14S19, and D14S23. Two other chromosomal breakpoints, found in probands HSC 121 and HSC 981, could not be distinguished from each other using DNA probes, although the cytogenetic breakpoints appeared to be different at 14q32.32 and 14q32.31, respectively. The region between the breakpoints of HSC 6 and HSC 121 contains AKT1, D14S1, D14S17, and D14S16. The entire telomeric band 14q32 is assumed to contain about 10% of chromosome 14, or approximately 10 Mb. The 8 most telomeric loci, including D14S1, map to 14q32.32-qter, which measures only several megabases. However, these loci span a genetic distance of 23 cM. The high recombination frequency contrasts with the observation that two of the gamma genes in the IGH constant region show a high degree of linkage disequilibrium, though 180 kb apart. This finding suggests that a telomeric localization per se does not lead to a higher recombination frequency and favors the hypothesis that the higher recombination frequency at the telomeres may be due to specific "hot spots" for recombination.  相似文献   

5.
A specific 14q32 breakpoint is observed in a homologous chromosome 14 translocation [t(14;14)q12q32] occurring in the T-cells of about 10% of patients with ataxia-telangiectasia (AT). To investigate whether the 14q32 breakpoint in AT occurs within the immunoglobulin gene cluster as is frequently detected in B-cell lymphoma, immunoglobulin clones were hybridized to Southern blots of DNA isolated from the T-cells of two AT patients with this chromosome 14 translocation. The 14q32 translocation breakpoints in these patients are apparently not within JH, S mu, C mu, S alpha-1 or -2, or C alpha-1 or -2, but one of the patients has an inverted duplication of at least 26 kilobases (kb) of the C mu region, with an associated 5' flanking deletion. The point of origin of the inverted duplication is within JH near the recombination signal for the J4 gene. This suggests that normal JH recombination mechanisms may have played a role in the development of this 14q32 chromosomal aberration. The presence of AT chromosomal breakpoints near other rearranging genes suggests a role for exaggerated recombination in the pathogenesis of chromosomal instability in AT.  相似文献   

6.
We report here a cytogenetic and molecular analysis of two cases of T-cell leukemia with t(14;14) (q11.2;q32). Through in situ hybridization and Southern blotting, using radioactively labeled immunoglobulin heavy chain (IGH) and alpha T-cell receptor (TCRA) gene probes, we found in both tumors that the loci of both IGH and TCRA were rearranged. Molecular analysis of the t(14;14) clearly demonstrated that in some tumors rearrangements of the IGH and TCRA genes are associated with interchromosomal exchanges that result in specific chromosome translocations that confer a proliferative advantage and predisposition to leukemic transformation. The implication of these rearrangements for normal and neoplastic T-cell development is discussed.  相似文献   

7.
A physical map of the human PI and AACT genes   总被引:2,自引:0,他引:2  
L Sefton  G Kelsey  P Kearney  S Povey  J Wolfe 《Genomics》1990,7(3):382-388
We have used probes from the human genes PI, PIL, and AACT (alpha 1-antitrypsin, alpha 1-antitrypsin-related sequence, and alpha 1-antichymotrypsin) to make a pulsed-field map of the surrounding region of 14q31-32. We have discovered that the PI-PIL gene cluster is only 220 kb away from the AACT gene and that it is orientated in the opposite direction. The comparatively short distance between the genes comes as a surprise given previous estimates of the level of genetic recombination between them.  相似文献   

8.
9.
The genes encoding the alpha 1 chain of Type III collagen (COL3A1) and the alpha 2 chain of Type V (COL5A2) collagen have been mapped to the long arm of human chromosome 2. Linkage analysis in CEPH families indicated that these two genes are close to each other, with no recombination in 37 informative meioses. In the present study, DNA probes from the 3' ends of each gene have been physically mapped by pulsed-field gel electrophoresis. The probes recognized 11 macrorestriction fragments in common, ranging from greater than 1000 kb MluI and NotI fragments to a 35-kb SfiI fragment. Therefore, the COL3A1 and COL5A2 genes appear to exist as a gene cluster on chromosome 2. This is the third example of a collagen gene cluster. Other examples include the COL4A1-COL4A2 genes on chromosome 13q and the COL6A1-COL6A2 genes on chromosome 21q. The physical proximity of these genes may indicate common evolution and/or regulation.  相似文献   

10.
The analysis of two rodent X human somatic cell hybrids, carrying different inborn translocations of the human chromosome 14 long arm, has permitted us to narrow down the localization of the structural locus for alpha-1-antitrypsin (PI) to band 14q32.1, proximally to the highly polymorphic DNA locus D14S1 which has been localized by previous studies between 14q32.1 and 14q32.2. These data, evaluated in conjunction with other published information, suggest that the D14S1 locus is cytologically equidistant from both the PI locus and the complex locus for the immunoglobulin heavy chains (IGH) but, genetically, it appears much closer to the latter since the recombination frequency reported between the IGH complex and PI is six times greater than that between the IGH complex and D14S1 (lod score peaks respectively at 26% and 4% with narrow fiducial limits). The present report adds further strength to the frequently proposed hypothesis of a nonlinear relationship between cytologic and genetic distances of human genes. The possibility that this phenomenon may be a feature of frequent occurrence throughout the entire human genome is discussed.  相似文献   

11.
播散性浅表性光线性汗孔角化症(DSAP)是一种以多个浅表的角化性皮损,边缘轻微嵴状角化性隆起为特征的少见的慢性角化性皮肤病,呈常染色体显性遗传。以往的研究将该病基因定位于12q23.2—24.1区域(DSAP1)和15q25.1-26.1区域(DSAP2)。本研究对2个无关的六代DSAP家系进行了全基因组扫描和连锁分析,结果显示,这2个DSAP家系在D12窝4位点的最高累积LOD值为8.28(θ=0.00)。单倍型分析结果显示,这2个DSAP家系致病基因位于12q24.1-q24.2(D12S330和D12S354)之间8.0cM的区域内。该区域与DSAP1的致病区域部分重叠。对重叠区域内6个候选基因(CRY1,PWP1,ASCL4,PRDM4,KIAA0789和CMKLR1)的编码区进行序列分析,在DSAP病人中未发现突变位点。提示该6个候选基因可能与这2个DSAP家系的发病机理无关。  相似文献   

12.
Rearrangements involving the IGH gene have been identified in about 50% of non-Hodgkin B-cell lymphomas (NHLs) and correlated to clinically relevant subgroups. However, the detection rate largely varied with the technique used. We analyzed the incidence of IGH rearrangements using several fluorescence in situ hybridization (FISH) techniques on metaphases obtained from 96 patients with nodal NHL. An IGH rearrangement was identified in 71 cases (74%). A t(14;18)(q32;q21) was found in 37 of the 42 follicular lymphomas (88.1%) studied and a t(11;14)(q13;q32) in 12 of the 14 mantle cell lymphomas (85.7%). IGH rearrangements were identified in 21 of the 40 diffuse large B-cell lymphomas (52.5%), including seven t(14;18)(q32;q21) and four t(3;14)(q27;q32). Conventional cytogenetics was uninformative in several cases. However, the complemented analysis using 24-color FISH, chromosomal whole paints, telomeric probes and locus specific identifiers enabled us to characterize complex and/or masked IGH translocations in follicular lymphomas and mantle cell lymphomas and to identify all the chromosomal partners involved in IGH rearrangements in diffuse large B-cell lymphomas. This study shows the interest of using metaphase FISH in addition to conventional cytogenetics. Following banding techniques, FISH with the IGH dual color probe can be the first approach in NHL, after which chromosome painting and 24-color FISH can be used to identify the chromosomal partners involved in IGH rearrangements. The identification of these genes is of utmost importance for a better understanding of the molecular mechanisms involved in the genesis of lymphoma.  相似文献   

13.
Human WNT3A and WNT14 cDNAs were cloned and characterized. WNT3A and WNT14 encoded WNT family protein of 352 and 365 amino acids, respectively. The 3.0-kb WNT3A mRNA was moderately expressed in placenta, and the 4.4-kb WNT14 mRNA was moderately expressed in skeletal muscle and heart. Although WNT3A mRNA was not detected in 35 human cancer cell lines, WNT14 mRNA was expressed in gastric cancer cell lines TMK1, MKN7, MKN45 and KATO-III. WNT3A and WNT14 genes, clustered in the head to head manner with an interval of about 58.0 kb, were mapped to human chromosome 1q42 region by fluorescence in situ hybridization. WNT3 and WNT15, clustered in human chromosome 17q21 region, are related genes of WNT3A and WNT14, respectively. WNT3A-WNT14 gene cluster and WNT3-WNT15 gene cluster might be generated due to duplication of ancestral gene cluster, just like WNT10A-WNT6 gene cluster and WNT10B-WNT1 gene cluster. Integration sites of mouse mammary tumor virus (MMTV) are located in the mouse chromosomal regions corresponding to these human WNT gene clusters. These results strongly suggest that unidentified nucleotide motif responsible for susceptibility to recombination might exist within the intergenic regions of these WNT gene clusters.  相似文献   

14.
A highly malignant human T-cell receptor (TCR) gamma/delta+ T-cell leukemia was shown to have a productive rearrangement of the TCR delta locus on one chromosome 14 and a novel t(8;14)(q24;q11) rearrangement involving the J delta 1 gene segment on the other chromosome 14. Chromosome walking coupled with pulsed-field gel electrophoretic (PFGE) analysis determined that the TCR J delta 1 gene fragment of the involved chromosome was relocated approximately 280 kb downstream of the c-myc proto-oncogene locus found on chromosome band 8q24. This rearrangement was reminiscent of the Burkitt's lymphoma variants that translocate to a region identified as the pvt-1 locus. Sequence comparison of the breakpoint junctions of interchromosomal rearrangements in T-cell leukemias involving the TCR delta-chain locus revealed novel signal-like sequence motifs, GCAGA(A/T)C and CCCA(C/G)GAC. These sequences were found on chromosome 8 at the 5' flanking site of the breakpoint junction of chromosome 8 in the TCR gamma/delta leukemic cells reported here and also on chromosome 1 in T-cell acute lymphocytic leukemia patients carrying the t(1;14)(p32;q11) rearrangement. These results suggest that (i) during early stages of gamma delta T-cell ontogeny, the region 280 kb 3' of the c-myc proto-oncogene on chromosome 8 is fragile and accessible to the lymphoid recombination machinery and (ii) rearrangements to both 8q24 and 1p32 may be governed by novel sequence motifs and be subject to common enzymatic mechanisms.  相似文献   

15.
16.
The constant region of the human immunoglobulin heavy chain (IGHC) is encoded by a cluster of genes near the telomere of chromosome 14q. Deletions and duplications of single or multiple genes in the cluster have been identified, but little information about the breakpoint junctions has been available, in part due to the high degree of sequence similarity between the genes in this region. We report an intensive study of a homozygous deletion, using Southern hybridization and polymerase chain reaction techniques. We found that the deleted DNA includes the functional epsilon gene, and that the breakpoints are located within a 2 kilobase Bam HI/Sac I region of both the IGHEP1 and IGHE genes. These results revise a previous conclusion regarding the deleted region. Definition of breakpoints occuring within thh cluster may shed light on recombination mechanisms.  相似文献   

17.
18.
Immunoglobulin class switch involves a unique recombination event that takes place at the switch (S) region which is located 5' to each constant region (C) gene of the heavy (H) chain. For example, differentiation of the B lymphocyte from a mu-chain producer to an epsilon-chain producer is mediated by the switch recombination between the S mu and S epsilon regions. In order to elucidate the molecular mechanism for the switch recombination, we have determined nucleotide sequences surrounding the class switch recombination sites of the C epsilon and C gamma 3 genes and those in the 5' flanking regions of the C gamma 2a and C delta genes. The results indicate that the 5' flanking regions of all the CH genes except for the C delta gene contain the S regions which comprise tandem repetition of short unit sequences in agreement with the previous analyses of the S gamma 1, S gamma 2b, S mu, and S alpha regions. Comparison of the nucleotide sequences of all the S regions revealed that length as well as nucleotide sequences of the S regions vary among different classes of the CH gene, but they share short common sequences, (G)AGCT and TGGG(G). The nucleotide sequence of the S mu region is homologous to those of the other S regions in the decreasing order of the S epsilon, S alpha, S gamma 3, and (S gamma 1, S gamma 2b, s gamma 2a) regions. We have compared the nucleotide sequences immediately adjacent to the recombination sites of seven rearranged genes and have always fund tetranucleotides TGAG and/or TGGG, except for one case. Such tetranucleotides may constitute a part of the recognition sequence of a putative recombinase. These results provide further support for our previous proposal that the switch recombination may be facilitated by short common sequences dispersed in all the S regions.  相似文献   

19.
Linkage between the locus for coagulation factor XIIIA (F13A) and HLA-region genes has been revealed during a linkage study between F13A and approximately 40 other polymorphic marker genes. In males, the maximum lod score between F13A and HLA-region genes (HLA-A, -C, -B, -DR; C4A, -B; Bf; and/or C2) is 7.60 at theta 1 = .18. To GLO, the maximum lod score is 2.37 at theta 1 = .19; to PGM3, .22 at theta 1 = .35. Female data indicate a clear sex difference in recombination frequency between F13A and HLA. The present findings, in combination with earlier knowledge of PGM3/GLO/HLA localization and gene distances, show that F13A is distal to HLA on the short arm of chromosome 6 in man. It is thus likely that by including FXIIIA typing in linkage studies, the whole male 6p is within mapping distance of highly polymorphic, classical marker genes. Earlier findings that the Hageman factor gene (F12) is located in the same chromosomal region may indicate the presence of a coagulation factor gene cluster in this region.  相似文献   

20.
We have used a panel of 13 DNA markers in the distal region of chromosome 14q to characterize deletions in three patients determined cytogenetically to have a ring or terminally deleted chromosome 14. We have characterized one patient with a ring chromosome 14 [r (14) (p13q32.33)] and two with terminal deletions [del (14) (pterq32.3:)]. The two patients with cytogenetically identical terminal deletions of chromosome 14 were found to differ markedly when characterized with molecular markers. In one patient, none of the markers tested were deleted, indicating that the apparent terminal deletion is actually due to either an undetected interstitial deletion or a cryptic translocation event. In the other patient, the deletion was consistent with the cytogenetic observations. The deleted chromosome was shown to be of paternal origin. The long-arm breakpoint of the ring chromosome was mapped to within a 350-kb region of the immunoglobulin heavy chain gene cluster (IGH). This breakpoint was used to localize markers D14S20 and D14S23, previously thought to lie distal to IGH, to a more proximal location. The ring chromosome represents the smallest region of distal monosomy 14q yet reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号