首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.  相似文献   

3.
NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10(-6) M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts.  相似文献   

4.
Notch signaling is a conserved cell fate regulator during development and postnatal tissue regeneration. Using skeletal muscle satellite cells as a model and through myogenic cell lineage-specific NICD(OE) (overexpression of constitutively activated Notch 1 intracellular domain), here we investigate how Notch signaling regulates the cell fate choice of muscle stem cells. We show that in addition to inhibiting MyoD and myogenic differentiation, NICD(OE) upregulates Pax7 and promotes the self-renewal of satellite cell-derived primary myoblasts in culture. Using MyoD(-/-) myoblasts, we further show that NICD(OE) upregulates Pax7 independently of MyoD inhibition. In striking contrast to previous observations, NICD(OE) also inhibits S-phase entry and Ki67 expression and thus reduces the proliferation of primary myoblasts. Overexpression of canonical Notch target genes mimics the inhibitory effects of NICD(OE) on MyoD and Ki67 but not the stimulatory effect on Pax7. Instead, NICD regulates Pax7 through interaction with RBP-Jκ, which binds to two consensus sites upstream of the Pax7 gene. Importantly, satellite cell-specific NICD(OE) results in impaired regeneration of skeletal muscles along with increased Pax7(+) mononuclear cells. Our results establish a role of Notch signaling in actively promoting the self-renewal of muscle stem cells through direct regulation of Pax7.  相似文献   

5.
6.
We demonstrate a novel interaction of the nephroblastoma overexpressed gene (NOV), a member of the CCN gene family, with the Notch signaling pathway. NOV associates with the epidermal growth factor-like repeats of Notch1 by the CT (C-terminal cysteine knot) domain. The promoters of HES1 and HES5, which are the downstream transducers of Notch signaling, were activated by NOV. Expressions of NOV and Notch1 were concomitant in the presomitic mesoderm and later in the myocytes and chondrocytes, suggesting their synergistic effects in mesenchymal cell differentiation. In C2/4 myogenic cells, elevated expression of NOV led to down-regulation of MyoD and myogenin, resulting in inhibition of myotube formation. These results indicate that NOV-Notch1 association exerts a positive effect on Notch signaling and consequently suppresses myogenesis.  相似文献   

7.
During Drosophila myogenesis, Notch signalling acts at multiple steps of the muscle differentiation process. In vertebrates, Notch activation has been shown to block MyoD activation and muscle differentiation in vitro, suggesting that this pathway may act to maintain the cells in an undifferentiated proliferative state. In this paper, we address the role of Notch signalling in vivo during chick myogenesis. We first demonstrate that the Notch1 receptor is expressed in postmitotic cells of the myotome and that the Notch ligands Delta1 and Serrate2 are detected in subsets of differentiating myogenic cells and are thus in position to signal to Notch1 during myogenic differentiation. We also reinvestigate the expression of MyoD and Myf5 during avian myogenesis, and observe that Myf5 is expressed earlier than MyoD, consistent with previous results in the mouse. We then show that forced expression of the Notch ligand, Delta1, during early myogenesis, using a retroviral system, has no effect on the expression of the early myogenic markers Pax3 and Myf5, but causes strong down-regulation of MyoD in infected somites. Although Delta1 overexpression results in the complete lack of differentiated muscles, detailed examination of the infected embryos shows that initial formation of a myotome is not prevented, indicating that exit from the cell cycle has not been blocked. These results suggest that Notch signalling acts in postmitotic myogenic cells to control a critical step of muscle differentiation.  相似文献   

8.
9.
10.
11.
Both activin-like signaling and Notch signaling play fundamental roles during early development. Activin-like signaling is involved in mesodermal induction and can induce a broad range of mesodermal genes and tissues from prospective ectodermal cells (animal caps). On the other hand, Notch signaling plays important roles when multipotent precursor cells achieve a specific cell fate. However, the relationship between these two signal pathways is not well understood. Here, we show that activin A induces Delta-1, Delta-2 and Notch expression and then activates Notch signaling in animal caps. Also, in vivo, ectopic activin-like signaling induced the ectopic expression of Delta-1 and Delta-2, whereas inhibition of activin-like signaling abolished the expression of Delta-1 and Delta-2. Furthermore, we show that MyoD, which is myogenic gene induced by activin A, can induce Delta-1 expression. However, MyoD had no effect on Notch expression, and inhibited Delta-2 expression. These results indicated that activin A induces Delta-1, Delta-2 and Notch by different cascades. We conclude that Notch signaling is activated when activin-like signaling induces various tissues from homogenous undifferentiated cells.  相似文献   

12.
13.
Cross-talks among intracellular signaling pathways are important for the regulation of cell fate decisions and cellular responses to extracellular signals. Both the Notch pathway and the MAPK pathways play important roles in many biological processes, and the Notch pathway has been shown to interact with the ERK-type MAPK pathway. However, its interaction with the other MAPK pathways is unknown. Here we show that Notch signaling activation in C2C12 cells suppresses the activity of p38 MAPK to inhibit myogenesis. Our results show that Notch specifically induces expression of MKP-1, a member of the dual-specificity MAPK phosphatase, which directly inactivates p38 to negatively regulate C2C12 myogenesis. The Notch-induced expression of MKP-1 is shown to depend on RBP-J. Moreover, inhibition of MKP-1 expression by short interfering RNA suppresses p38 inactivation and partially rescues the negative regulation of myogenesis. These results reveal a novel cross-talk between the Notch pathway and the p38 MAPK pathway that is mediated by Notch induction of MKP-1.  相似文献   

14.
15.
Notch signalling via RBP-J promotes myeloid differentiation   总被引:10,自引:0,他引:10       下载免费PDF全文
Schroeder T  Just U 《The EMBO journal》2000,19(11):2558-2568
  相似文献   

16.
17.
18.
Ong CT  Sedy JR  Murphy KM  Kopan R 《PloS one》2008,3(7):e2823
Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号