首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical scattering coefficient of a dilute, well-solubilized eumelanin solution has been accurately measured as a function of incident wavelength, and found to contribute <6% of the total optical attenuation between 210 and 325 nm. At longer wavelengths (325-800 nm), the scattering was less than the minimum sensitivity of our instrument. This indicates that ultraviolet and visible optical density spectra can be interpreted as true absorption with a high degree of confidence. The scattering coefficient versus wavelength was found to be consistent with Rayleigh theory for a particle radius of 38 +/- 1 nm. Our results shed important light on the role of melanins as photoprotectants.  相似文献   

2.
Liu GL  Long YT  Choi Y  Kang T  Lee LP 《Nature methods》2007,4(12):1015-1017
We observed quantized plasmon quenching dips in resonant Rayleigh scattering spectra by plasmon resonance energy transfer (PRET) from a single nanoplasmonic particle to adsorbed biomolecules. This label-free biomolecular absorption nanospectroscopic method has ultrahigh molecular sensitivity.  相似文献   

3.
The shear flow dynamics of reversible red cell aggregates in dense suspensions were investigated by ultrasound scattering, to study the shear disruption processes of Rayleigh clusters and examine the effective mean field approximation used in microrheological models. In a first section, a rheo-acoustical model, in the Rayleigh scattering regime, is proposed to describe the shear stress dependence of the low frequency scattered power in relation to structural parameters. The fractal scattering regime characterizing the anisotropic scattering from flocs of size larger than the ultrasound wavelength is further discussed. In the second section, we report flow-dependent changes in the low-frequency scattering coefficient in a plane-plane flow geometry to analyze the shear disruption processes of hardened or deformable red cell aggregates in neutral dextran polymer solution. Rheo-acoustical experiments are examined on the basis of the rheo-acoustical model and the effective medium approximation. The ability of ultrasound scattering technique to determine the critical disaggregation shear stress and to give quantitative information on particle surface adhesive energy is analyzed. Lastly, the shear-thinning behavior of weakly aggregated hardened or deformable red cells is described.  相似文献   

4.
Resonance light scattering (RLS), a phenomenon of abrupt enhancement of Rayleigh light scattering in close proximity to an absorption band, is easily detectable in solutions of strongly absorbing chromophores, which form large aggregates with strong π-electronic coupling among the chromophores. RLS spectra need to be corrected for the sensitivity of the spectrofluorimeter as well as for the effects of internal light filter. A method for correcting the measured RLS is described. It was shown by the method that addition of KCl induces formation of extended supramolecular aggregates (probably of H-type) of the anionic dye merocyanine 540 in water. The RLS spectra of a photosensitizer m-tetra(hydroxyphenyl)chlorin (Foscan®) indicate formation of J-aggregates of this dye in aqueous medium.  相似文献   

5.
In near weak acid to neutral medium, ethyl violet (EV) can react rapidly with hyaluronic acid (HA) to form a complex, which results in a significant enhancement of resonance Rayleigh scattering (RRS) and an appearance of a new spectrum, and the scattering wavelengths appear at 231, 274, 326, 498 and 640 nm. The maximum scattering wavelength appears at 326 nm. The RRS intensity is directly proportional to the concentration of HA in the range of 0.4-48.0 microg mL(-1). A new method for the determination of trace amounts of HA based on the RRS method has been developed. The method exhibits high sensitivity, and the detection limit for HA is 9.6 x 10(-2) microg mL(-1). This method was applied for determining HA in eyedrops and in sodium hyaluronate injection samples with satisfactory results. Furthermore, the enhancement reasons of RRS and the relationship between RRS spectral characteristics of the HA-EV complex and its absorption spectrum have been discussed.  相似文献   

6.
A simple and sensitive resonance Rayleigh scattering (RRS) spectra method was developed for the determination of calf thymus DNA (ctDNA). The enhanced RRS signals were based on the interactions between ctDNA and aminoglycoside antibiotics (AGs) including kanamycin (KANA), tobramycin (TOB), gentamicin (GEN) and neomycin (NEO) in a weakly acidic medium (pH 3.3–5.7). Parameters influencing the method were investigated. Under optimum conditions, increments in the scattering intensity (?I) were directly proportional to the concentration of ctDNA over certain ranges. The detection limit ranged from 12.2 to 16.9 ng/mL. Spectroscopic methods, including RRS spectra, absorption spectra and circular dichroism (CD) spectroscopy, coupled with thermo‐denaturation experiments were used to study the interactions, indicating that the interaction between AGs with ctDNA was electrostatic binding mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The nonlinear optical properties of single gold nanorods (GNRs) with a large diameter of ~200 nm and a long length of ~800 nm were investigated by using a focused femtosecond (fs) laser light with tunable wavelength. While the linear and nonlinear optical properties of small-sized GNRs have been extensively studied, the nonlinear optical properties of large-sized GNRs and the effects of high-order surface plasmon resonances remain unexplored. Second harmonic generation (SHG) or/and two-photon-induced luminescence (TPL) were observed in the nonlinear response spectra, and their dependences on excitation wavelength and polarization were examined. The scattering and absorption spectra of the small- and large-sized GNRs were compared by using the discrete dipole approximation method. It was found that the extinction of large-sized GNRs is dominated by scattering rather than absorption, which is dominant in small-sized GNRs. In addition, it was revealed that the excitation wavelength-dependent SHG of a GNR is governed by the linear scattering of the GNR and the maximum SHG is achieved at the valley of the scattering spectrum. In comparison, the excitation wavelength dependence of TPL is determined by the absorption spectrum of the GNR. The polarization-dependent SHG of a GNR exhibits a strong dependence on the dimension of the GNR, and it may appear as bipolar distributions parallel or perpendicular to the long axis of the GNR or multipole distributions.  相似文献   

8.
The principle of a multiple wavelength illumination method for flow cytometers, based upon a combination of a helium-neon laser and an arc lamp as illumination sources is described. By using a prism, the light from the arc lamp is dispersed and the different colors are imaged at different places on the sample stream. The small angle light scattering from the helium-neon laser light is measured as a relevant parameter and serves as a trigger signal for subsequent measurements of fluorescence or scattering of light from the arc lamp. Two experimental systems are described utilizing this principle: a system where the emission is detected orthogonally with respect to the direction of the illumination beams, and an epi-illumination system. With the orthogonal set-up multiple wave-length right angle scattering measurements are possible. This is illustrated by showing that the orthogonal scattering from erythrocytes is strongly dependent on the illumination wavelength. It is further shown that the apparatus is suitable for the measurement of intracellular pH using the pH dependence of the excitation spectrum of fluorescein. The epi-illumination system allows excitation of two (or more) fluorescent dyes with different excitation spectra. In this case the emission spectra of the fluorescent dyes may overlap substantially. This is shown by simultaneous measurement of DNA and protein of Chinese hamster lung cells using mitramycin and tetramethyl rhodamin isothiocyanate (TRITC).  相似文献   

9.
The method of quasi-elastic laser light scattering (QLS), particularly at low forward scattering angles, has been complicated by the transient presence of Mie or large Rayleigh scattering particles which contaminate the scattering volume. These large contaminating particles have substantial effects on photon correlation spectroscopy because the presence of these larger scatterers tends to decrease the value of the apparent diffusion coefficient of the particle of interest. A method is presented which yields more accurate diffusion constants by autocorrelation of selected photon count periods representative of minimal Mie or large Rayleigh particle contamination. This method was applied to the determination of the apparent diffusion constant for four proteins—ovalbumin, chymotrypsinogen-A, bovine serum albumin, and ribonuclease-A.  相似文献   

10.
提出了一种基于共振瑞利散射(RRS)原理测量人体血清蛋白的新方法。在缓冲溶液的作用下,把配制好的人体血清蛋白稀释液按比例与四羧基酞菁锌混合,经过化学作用后在波长为400 nm左右蓝色波段强光照射下,散射出480 nm左右的共振瑞利散射光强信号。考察在不同pH对共振瑞利散射光强信号与混合物中的血清蛋白反应线性关系的影响。结果表明,pH在6.0~8.0范围内混合溶液共振瑞利散射光强信号与血清蛋白的线性关系良好。  相似文献   

11.
12.
In an HCl medium (pH 1.5), ligustrazine (2,3,5,6‐tetramethylpyrazine, TMP) reacted with 12‐tungstophosphoric acid (TP) to form a 3 : 1 ion‐association complex. As a result, the intensities of resonance Rayleigh scattering (RRS), second‐order scattering (SOS) and frequency doubling scattering (FDS) were greatly enhanced and new scattering spectra appeared. The maximum RRS, SOS and FDS wavelengths of the ion‐association complexes were located at 379, 738 and 395 nm, respectively. The scattering intensity increments (ΔIRRS, ΔISOS and ΔIFDS) were directly proportional to the concentration of ligustrazine within certain ranges. The detection limits (3σ) of RRS, SOS and FDS were 1.6, 3.2 and 2.8 ng/mL. Optimal conditions for the RRS method and factors influencing the method were discussed, and the structure of the ion‐association complex and the reaction mechanism were investigated. Transmission electron microscopy (TEM) was used to characterize the structures of the ion‐association complex. Based on the ion‐association reaction and its spectral response, a rapid, simple and sensitive RRS method for the determination of TMP was developed. It was applied to the determination of TMP in tablet and urine samples with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The localized surface plasmon resonance of a silver nanoparticle is responsible for its ability to strongly absorb and scatter light at specific wavelengths. The absorption and scattering spectra (i.e., plots of cross sections as a function of wavelength) of a particle can be predicted using Mie theory (for a spherical particle) or the discrete dipole approximation method (for particles in arbitrary shapes). In this review, we briefly discuss the calculated spectra for silver nanoparticles with different shapes and the synthetic methods available to produce these nanoparticles. As validated in recent studies, there is good agreement between the theoretically calculated and the experimentally measured spectra. We conclude with a discussion of new plasmonic and sensing applications enabled by the shape-controlled nanoparticles.  相似文献   

14.
A new method based on resonance Rayleigh scattering (RRS) was proposed for the determination of quinolones (QNS) at the nanogram level. In pH 3.3–4.4 Britton–Robinson buffer medium, quinolones such as ciprofloxacin, pipemidic acid (PIP), lomefloxacin (LOM), norfloxacin (NOR) and sarafloxacin (SAR) were protonated and reacted with methyl orange (MO) to form an ion‐pair complex, which then further formed a six‐membered ring chelate with Pd(II). As a result, new RRS spectra appeared and the RRS intensities were enhanced greatly. RRS spectral characteristics of the MO–QNS–Pd(II) systems, the optimum conditions for the reaction, and the influencing factors were investigated. Under optimum conditions, the scattering intensity (∆I) increments were directly proportional to the concentration of QNS with in certain ranges. The method had high sensitivity, and the detection limits (3σ) ranged from 6.8 to 12.6 ng/mL. The proposed method had been successfully applied for the determination of QNS in pharmaceutical formulations and human urine samples. In addition, the mechanism of the reaction system was discussed based on IR, absorption and fluorescence spectral studies. The reasons for the enhancement of scattering spectra were discussed in terms of fluorescence‐scattering resonance energy transfer, hydrophobicity and molecular size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
One of the primary problems in membrane‐based protein separation is membrane fouling. In this study we explored the feasibility of employing Rayleigh light scattering data from fluorescence studies combined with chemometric techniques to determine whether a correlation could be established with membrane fouling phenomena. Membrane flux was measured in a dead‐end UF filtration system and the effect of protein solution properties on the flux decline was systematically investigated. A variety of proteins were used as a test case in this study. In parallel, the colloidal behavior of the protein solutions was assessed by employing multiwavelength Rayleigh scattering measurements. To assess the usefulness of Rayleigh scattering measurements for probing the colloidal behavior of proteins, a protein solution of β‐lactoglobulin was used as a base‐case scenario. The colloidal behavior of different β‐lactoglobulin solutions was inferred based on published data for this protein, under identical solution conditions, where techniques other than Rayleigh scattering had been used. Using this approach, good agreement was observed between scattering data and the colloidal behavior of this protein. To test the hypothesis that a high degree of aggregation will lead to increased membrane fouling, filtration data was used to find whether the Rayleigh scattering intensity correlated with permeate flux changes. It was found that for protein solutions which were stable and did not aggregate, fouling was reduced and these solutions exhibited reduced Rayleigh scattering. When the aggregation behavior of the solution was favored, significant flux declines occurred and were highly correlated with increased Rayleigh scattering. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
The aim of this work was to measure optical properties of stool of mice to provide this relevant wavelength‐dependent behavior for optical imaging modalities such as fluorescent molecular tomography and near‐infrared optical tomography. BALB/c nude female mice were studied and optical properties of the stool were determined by employing the inverse adding‐doubling approach. The animals were kept on chlorophyll‐free diet. Nine stool samples were measured. The wavelength‐dependent behavior of absorption and scattering in 550 to 1000 nm range is presented. The reduced scattering spectrum is fitted to the Mie scattering approximation in the near‐infrared (NIR) wavelength range and to the Mie + Rayleigh approximation in visible/NIR range with the fitting coefficients presented. The study revealed that the absorption spectrum of stool can lead to crosstalk with the spectrum of hemoglobin in the NIR range.   相似文献   

17.
The circular dichroism spectra of membrane suspensions are distorted by differential light scattering and absorption flattening effects, which arise as a consequence of the large size of the membrane particles relative to the wavelength of light and the high concentration of proteins in the membranes. In this paper, the consequences of these phenomena on the protein spectra of large membrane particles are discussed, and methods for eliminating them are examined. The distortions due to differential light scattering are relatively small in membrane systems, and can be compensated for by use of a large detector acceptance angle geometry. Several methods for correcting for differential flattening, which introduces a substantial distortion, have been evaluated, and a new method, the flattening quotient approach, which produces by far the best results, is described. Since the secondary structures calculated from circular dichroism spectra are highly dependent on accurate spectral shape and magnitude, this method for correcting the spectra may find general application in circular dichroism studies of membrane proteins.  相似文献   

18.
H-shaped resonant optical antennas are proposed by adding resonant strips at the ends of arms of short dipole antennas. Numerical simulations using finite-difference time-domain method show that the H-shaped antennas present greater electric field enhancement compared with optical dipole antennas at the same resonant wavelength. The slot coupling between the two arms also results in a smaller full width at half maximum of the scattering spectra. Two field-enhancing mechanisms are found to decide the resonant properties of the H-shaped antennas. The influence of the geometry is studied.  相似文献   

19.
In pH 4.0 Britton–Robinson buffer medium, PdCl2 was able to react with enzymes (EZ) such as lysozyme (LYSO) and papain (PAP) to form a coordination complex (EZ–PdCl2), which further reacted with MoO42‐ to form a ternary complex (MoO42‐–EZ–PdCl2). As a result, the absorption and fluorescence spectra changed; new spectra of resonance Rayleigh scattering (RRS), second‐order scattering (SOS) and frequency‐doubling scattering (FDS) appeared and their intensities were enhanced greatly. The maximum RRS, SOS and FDS wavelengths of two ternary complexes were located at 310, 560 and 350 nm, respectively. The increments of scattering intensity were directly proportional to the concentrations of EZ within certain ranges. The detection limits (3σ) of LYSO and PAP were 4.5 and 14.0 ng/mL (RRS method), 9.6 and 57.8 ng/mL (SOS method), and 5.2 and 106.0 ng/mL (FDS method). Taking the MoO42‐–LYSO–PdCl2 system, which was more sensitive, as an example, the effects of coexisting substances were evaluated. The methods showed excellent selectivity. Accordingly, new rapid, convenient, sensitive and selective scattering methods for the determination of LYSO and PAP were proposed and applied to determine LYSO in egg white with satisfactory results. The reaction mechanism and basis of the enhancement of scattering were discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In an acid medium solution, proteins such as bovine serum albumin, human serum albumin, ovalbumin, hemoglobin, lysozyme, γ‐globulin, α‐chymotrypsin and papain could react with [PdI4]2? by virtue of electrostatic attraction and hydrophobic force to form ion‐association complexes. As a result, the resonance Rayleigh scattering (RRS) and resonance nonlinear scattering such as second‐order scattering (SOS) and frequency doubling scattering (FDS) intensities were enhanced greatly and new scattering spectra appeared. The maximum scattering peaks of RRS, SOS and FDS were at 367, 720 and 370 nm, respectively. The enhanced RRS, SOS and FDS intensities were directly proportional to the concentrations of proteins. The detection limits for the different proteins were 2.4–11.8 ng/mL for RRS method, 9.5–47.9 ng/mL for SOS method and 4.6–18.5 ng/mL for FDS method. In this work, the influences of the interaction of [PdI4]2? with proteins on spectral characteristics of RRS, SOS and FDS were investigated and the optimum conditions were tested. Meanwhile, the effects of coexisting substances were tested and the results showed that the method exhibited a good selectivity. Based on the above research, a highly sensitive, simple and rapid method for the determination of trace amounts of proteins by resonance light scattering technique has been developed. It can be applied to the determination of proteins in tablet, human serum and urine samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号