首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesion forces have been measured between an atomic force microscope tip derivatized with an active enzyme, shikimate kinase, and an ATP mimic immobilized on a gold surface. Experiments with competitive binding of other ligands in solution show that the observed adhesion forces arise predominantly from specific interactions between the immobilized enzyme and surface-bound adenine derivative. These experiments represent a step in the development of a screening methodology based upon chemical force microscopy.  相似文献   

2.
Glucose oxidase (E.C 1.1.3.4) immobilized onto activated surface of mica was analyzed by enzymatic kinetics and visualization with atomic force microscopy (AFM). The activity of the immobilized enzyme decreased with the decrease of concentration of gamma-aminopropyltrimethoxysilane used for the first step of activation of mica, while AFM analysis showed similar homogeneous filling of the surface with the enzyme. The comparison of enzyme activity with its surface filling revealed that there has to be additional vertical structures, which cannot be visualized by the methods of AFM. The simultaneous decrease of the silanizing agent and the concentration of the enzyme led to molecular resolution for the enzyme on the surface of mica. This allows to propose the described method also for analyzing other surfaces of solid materials with coupled biomolecules.  相似文献   

3.
A bioconjugate of Pseudomonas cepacia lipase with alginate was prepared by simple adsorption. Atomic force microscope (AFM) images showed that this bioconjugate resulted from adsorption rather than entrapment of the enzyme as enzyme molecules were visible on the gel surface. The soluble bioconjugate exhibited increased enzyme activity in terms of high effectiveness factor (effectiveness factor was 3 for the immobilized preparation) and greater Vmax/Km value (Vmax/Km increased 25 times upon immobilization). This constitutes one of the less frequently observed instances of lipase activation by lid opening as a result of binding to a predominantly hydrophilic molecule. The bioconjugate was also more stable at 55 degrees C as compared to the free enzyme and could be reused for oil hydrolysis up to 4 cycles without any loss in activity. Fluorescence emission spectroscopy showed that the immobilized enzyme had undergone definite conformational changes.  相似文献   

4.
The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan-alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co(2+), Cu(2+), and Fe(3+), increased the enzyme activity, whereas CA activity was inhibited by Pb(2+), Hg(2+), ethylenediamine tetraacetic acid (EDTA), 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO(2) to CaCO(3). The maximum CO(2) sequestration potential was achieved with immobilized CA (480?mg CaCO(3)/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO(2) sequestration.  相似文献   

5.
Type II tropocollagen molecules were reacted with matrix metalloproteinase 8 (MMP-8) and the binding sites as well as the cleavage site of MMP-8 were detected on individual molecules using atomic force microscopy (AFM). Approximately 300-nm-long coiled-coil tropocollagen molecules were straightened and immobilized on an atomically flat surface for detection by AFM. The direct visualization of individual collagen molecules revealed heterogeneous characteristics of MMP-8:collagen complexes. We observed that there existed multiple MMP-8 nonspecific binding sites on the collagen molecules, but cleavage always took place at a unique site. When collagen molecules, straightened and immobilized on the surface, were reacted with MMP-8, a site of cleavage appeared as a gap in stretched molecules. This is the first report to visually show direct collagenase:collagen interactions using AFM. The described AFM-based analysis has potential as a protein analysis tool for understanding a complex mechanism of enzyme:substrate interactions.  相似文献   

6.
The purpose of the present investigation was to study the pH dependence of both the immobilization process and the enzyme activity of a feruloyl esterase (FoFaeC from Fusarium oxysporum) immobilized in mesoporous silica. This was done by interpreting experimental results with theoretical molecular modeling of the enzyme structure. Modeling of the 3D structure of the enzyme together with calculations of the electrostatic surface potential showed that changes in the electrostatic potential of the protein surface were correlated with the pH dependence of the immobilization process. High immobilization yields were associated with an increase in pH. The transesterification activity of both immobilized and free enzyme was studied at different values of pH and the optimal pH of the immobilized enzyme was found to be one unit lower than that for the free enzyme. The surface charge distribution around the binding pocket was identified as being a crucial factor for the accessibility of the active site of the immobilized enzyme, indicating that the orientation of the enzyme inside the pores is pH dependent. Interestingly, it was observed that the immobilization pH affects the specific activity, irrespective of the changes in reaction pH. This was identified as a pH memory effect for the immobilized enzyme. On the other hand, a change in product selectivity of the immobilized enzyme was also observed when the transesterification reaction was run in MOPS buffer instead of citrate phosphate buffer. Molecular docking studies revealed that the MOPS buffer molecule can bind to the enzyme binding pocket, and can therefore be assumed to modulate the product selectivity of the immobilized enzyme toward transesterification.  相似文献   

7.
In recent decades, the production of palatinose has aroused great interest since this structural isomer of sucrose has interesting potential. We describe a simple and effective method of immobilizing Serratia plymuthica cells in chitosan. The sucrose isomerase activity of immobilized preparations was enhanced many times by activation with fresh nutrient medium and subsequent drying. The preparations obtained were physically very stable with high enzyme activity and excellent operational stability. The effect of temperature, pH and substrate concentration on enzyme activity of the immobilized cells was investigated. Using immobilized cells, a complete conversion of sucrose (40% solution) into palatinose was achieved in 4 h in a "batch"-type enzyme reactor. The use of free or immobilized cells had no effect on the composition of the solution, in particular the sugar content. The palatinose content was 80% and that of trehalulose 7%.  相似文献   

8.
The preparation of biocatalysts based on immobilized trypsin is of great importance for both proteomic research and industrial applications. Here, we have developed a facile method to immobilize trypsin on hydrophobic cellulose-coated silica nanoparticles by surface adsorption. The immobilization conditions for the trypsin enzyme were optimized. The as-prepared biocatalyst was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and elemental analysis. In comparison with free enzyme, the immobilized trypsin exhibited greater resistances against thermal inactivation and denaturants. In addition, the immobilized trypsin showed good durability for multiple recycling. The general applicability of the immobilized trypsin for proteomic studies was confirmed by enzymatic digestion of two widely used protein substrates: bovine serum albumin (BSA) and cytochrome c. The surface adsorption protocols for trypsin immobilization may provide a promising strategy for enzyme immobilization in general, with great potential for a range of applications in proteomic studies.  相似文献   

9.
Enzymes play a pivotal role in catalyzing diverse reactions. However, their instability upon repetitive/prolonged use, as well as their inhibition by high substrates and product concentration, remains an area of concern. In this study, porcine pancreatic α-amylase was immobilized on magnetic Fe2O3 nanoparticles (Fe2O3-NPs) in order to hydrolyze starch. The magnetic nanoparticle bound enzymes retained 94% of their initial enzyme activity. X-ray diffraction and atomic force microscopy analyses showed that the prepared matrix had advantageous microenvironment and a large surface area for binding significant amounts of protein. Functional groups present in enzyme and support were monitored by Fourier transform infrared spectroscopy. Immobilized enzyme exhibited lowered pH optimum (pH 6.0) to a greater degree than its soluble counterpart (pH 7.0). Optimum temperature for the immobilized enzyme shifted towards higher temperatures. The immobilized enzyme was significantly more resistant to inactivation caused by various metal ions and chemical denaturants. Immobilized α-amylase hydrolyzed 92% starch in a batch process, after 8 h at 40°C; while the free enzyme could hydrolyze only 73% starch under similar experimental conditions. A reusability experiment demonstrated that the immobilized enzyme retained 83% of its original activity even after its 8th repeated use.  相似文献   

10.
Specific interaction between human IgM and polyclonal antibodies immobilized on support was studied by atomic force microscopy. Human IgMs are responsible for a number of side effects arising during the xenotransplantation of mammalian organs to man. On the basis of atomic force microscopy, a quantitative analysis of complexes with IgM was performed. The data of the analysis agree well with the results of enzyme immunoassay. It was shown that the method of detection of immune complexes based on atomic force microscopy is able to detect specific antibodies/antigens in serum.  相似文献   

11.
The synthesis of ethyl-oleate by the lipase from the newly isolated strain Burkholderia cepacia LTEB11 in three different systems has been studied - immobilization on a hydrophobic support (Accurel EP 100®), encapsulation in reverse micelles, and direct addition of powdered free enzyme to the reaction medium. The immobilized enzyme performed best, giving a 70% ester yield in 10 h, this yield being five-fold greater than that obtained for reversed micelles, and two and a half times greater than that obtained for direct addition. An increase in the amount of immobilized enzyme preparation added gave a 100% ester yield in 3 h. The immobilized preparation was quite stable, giving a 100% yield of ethyl-oleate during 11 repeated reactions, and 50% yield after 24 reactions. These results suggest that the lipase of our strain of B. cepacia LTEB11 immobilized on Accurel has good potential for application in biocatalysis in organic media.  相似文献   

12.
Immobilization of glucoamylase on gelatin by transition-metal chelation   总被引:1,自引:0,他引:1  
J F Kennedy  B Kalogerakis 《Biochimie》1980,62(8-9):549-561
The potential applicability of glutaraldehyde-crosslinked-gelatin particles for the immobilization of enzymes by encapsulation has been extended by addition of surface-bound enzyme, leading ultimately to a method for the preparation of dual immobilized enzyme conjugates. Attachment of enzyme to the surface of the capsules was achieved by a transition-metal chelation process in which the incoming enzyme becomes a ligand. Glucoamylase was so immobilized, using titanium-urea, -acrylamide, -citric acid, and -lactose complexes or titanium (IV) chloride as means of introducing the titanium chelating centre. The retentions of enzyme activity for both the surface-bound and pre-encapsulated enzymes were functions of the chelating complex chosen. Differences were observed between the action patterns of the two forms of immobilized enzyme. These action patterns and the production of reversion products are discussed in the light of application of gelatin-immobilized glucoamylase to the production of high-DE glucose syrups.  相似文献   

13.
The effect of both a positive and a negative applied potential on the p-NPA hydrolysis activity of bovine carbonic anhydrase (BCA) immobilized on graphite rods has been investigated. Background experiments show that the pH-activity profile for BCA free in solution is not affected by either a negative or a positive potential applied to graphite rods placed in the same solution. However, the activity of BCA immobilized by covalent attachment to a graphite rod is influenced by a potential externally applied to the graphite rod. An overall increase in activity (as determined by the initial rate of the p-NPA hydrolysis reaction) is observed in the presence of a -0.2 V (Ag/AgCl) applied potential, while decreased activity is evident at +0.6 V (Ag/AgCl). This is indicative of an electrolyte anion effect rather than a local pH effect. In the presence of the specific anion inhibitors Cl(-) and SCN(-), the relative BCA activity increases at -0.2 V (Ag/AgCl) and decreases at +0.6 V (Ag/AgCl) are consistent with the different BCA inhibition constants for Cl(-) and SCN(-). Accelerated loss of immobilized BCA activity also accompanies the application of the external potentials, particularly at +0.6 V (Ag/AgCl). Results described here represent an early example of potentiostatic control of nonredox enzyme activity. Several possible mechanisms are discussed including specific anion inhibition, enzyme surface charge/charged support material interactions, and charged product inhibition. It is likely that a combination of such mechanisms is operational in this system. The implications of external potentials affecting the activity of immobilized enzymes in the design of stable immobilized enzyme electrodes are also discussed.  相似文献   

14.
Tannase enzyme from Aspergillus oryzae was immobilized on various carriers by different methods. The immobilized enzyme on chitosan with a bifunctional agent (glutaraldehyde) had the highest activity. The catalytic properties and stability of the immobilized tannase were compared with the corresponding free enzyme. The bound enzyme retained 20·3% of the original specific activity exhibited by the free enzyme. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 55 °C for the immobilized form. The stability at low pH, as well as thermal stability, were significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation as reflected by a higher apparent Km value and a lower energy of activation. The immobilized enzyme retained about 85% of the initial catalytic activity, even after being used 17 times.  相似文献   

15.
Direct electrochemical transfer of electrons to the enzyme provides an excellent method of driving the catalytic reactions of cytochrome P450 enzymes that form a superfamily of vital heme enzymes involved in biological monooxygenation reactions. Covalent attachment of N-(1-pyrenyl) maleimide (pyrene maleimide) to the bacterial cytochrome P450, CYP101 has been carried out and the conjugated enzyme was shown to be specifically immobilized onto the glassy carbon electrode through the pyrene group. The electrode immobilized pyrene-conjugated enzyme showed quasi-reversible electrochemistry with a midpoint potential at −330 ± 10 mV versus Ag/AgCl. The unconjugated enzyme that did not have specific linkage with the pyrene maleimide was non-specifically adsorbed on the electrode surface and the electrochemical response was much weaker than that observed in case of the conjugated enzyme, though the midpoint potential was almost unchanged. The pyrene maleimide bound CYP101 was found to have surface coverage of 1.35 ± 0.3 × 10−10 mol/cm2 and the heterogeneous rate of electron transfer was found to be 0.21 ± 0.02 s−1, which is larger than that for the unconjugated enzyme. The pyrene maleimide linked immobilized enzyme was oriented to the electrode so that efficient electron transfer takes place from the electrode to the immobilized enzyme. The oxygenase activity of the immobilized conjugated enzyme was assayed from the enhancement of catalytic current in presence of oxygen and the natural substrate camphor. Mass spectrometric studies also showed enhanced formation of hydroxycamphor by electrochemically driven catalysis in the pyrene maleimide linked immobilized CYP101.  相似文献   

16.
The stabilizing potential of the antibodies recognizing the labile region of pancreatic ribonuclease A (RNase) has been investigated. The dodecapeptide SRNLTKDRAKPV corresponding to the labile region 32--43 on RNase was synthesized by the solid-phase method. Antiserum raised against the dodecapeptide-bovine serum albumin conjugate showed good cross-reactivity with the peptide and native RNase. RNase immobilized on Sepharose support precoupled either with the antipeptide immunoglobulin (IgG) or anti-RNase IgG proved to be more resistant to thermal inactivation than the soluble enzyme. Besides, stability against inactivation by trypsin at 55 degrees C was markedly high when enzyme was immobilized on the antipeptide IgG support, as compared to the soluble and other immobilized preparations. These results suggest that matrices bearing antibodies recognizing specific labile regions of enzyme may be useful in selectively improving their stability against specific forms of inactivation.  相似文献   

17.
To improve the performance of covalently immobilized penicillin acylase (PA), the immobilization was carried out in mesocellular silica foams (MCFs) using p-benzoquinone as cross linker. The characterizations of the immobilized enzyme were studied carefully. The results showed that the relative activity of the immobilized PA was increased to 145% of that of free enzyme. The activity was 3.7 folds of that of PA on the silica nanoparticles. The enzyme in MCFs presented a turnover equal to that of free enzyme. It was also found that the optimum pH of the immobilized PA shifted to pH 7.5 and the optimum reaction temperature rose from 45 to 50 degrees C. Furthermore, the stability of PA was ameliorated greatly after immobilization. Fourier transform infrared spectroscopy showed no major secondary structural change for PA confined in MCFs. The proposed covalent immobilizing technique would rank among the potential strategies for efficient immobilization of PA.  相似文献   

18.
The novel technique of immobilization of beta-galactosidase on colloidal liquid aphrons (CLAs) was investigated. CLAs are oil-in-water macroemulsions stabilised by a mixture of ionic and nonionic surfactants. Enzyme retention was found to be unaffected by changes in bulk phase pH and ionic strength, indicating that beta-galactosidase immobilization was due primarily to hydrophobic interactions. However, by varying the polarity of the internal solvent core, and the charge of the surfactants used in the formation of the CLAs, it was found that immobilization could be improved to almost 100% under certain conditions indicating that electrostatic interactions also affected immobilization to a lesser degree. Upon immobilization, it was found that there was a shift in the pH optimum of the enzyme, with the immobilized enzyme showing a broader range, and a maximal activity at higher pH. The immobilized beta-galactosidase displayed normal Michaelis-Menten dependence on substrate concentration, whilst also exhibiting superactivity for increased substrate concentrations. Activation energy was determined for the CLA immobilized enzyme, and it was found to decrease indicating that a conformational change had occurred that may account for the observed increase in activity. Finally, although the temperature profile of the immobilized enzyme was similar to the free enzyme, it was very stable, with a potential half-life of 3.6 years at 30 degrees C.  相似文献   

19.
The synthesis of ethyl-oleate by the lipase from the newly isolated strain Burkholderia cepacia LTEB11 in three different systems has been studied – immobilization on a hydrophobic support (Accurel EP 100®), encapsulation in reverse micelles, and direct addition of powdered free enzyme to the reaction medium. The immobilized enzyme performed best, giving a 70% ester yield in 10 h, this yield being five-fold greater than that obtained for reversed micelles, and two and a half times greater than that obtained for direct addition. An increase in the amount of immobilized enzyme preparation added gave a 100% ester yield in 3 h. The immobilized preparation was quite stable, giving a 100% yield of ethyl-oleate during 11 repeated reactions, and 50% yield after 24 reactions. These results suggest that the lipase of our strain of B. cepacia LTEB11 immobilized on Accurel has good potential for application in biocatalysis in organic media.  相似文献   

20.
The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan–alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co2+, Cu2+, and Fe3+, increased the enzyme activity, whereas CA activity was inhibited by Pb2+, Hg2+, ethylenediamine tetraacetic acid (EDTA), 5,5′-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO2 to CaCO3. The maximum CO2 sequestration potential was achieved with immobilized CA (480 mg CaCO3/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO2 sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号