首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actinobacillus succinogenes is a promising candidate for industrial succinate production. However, in addition to producing succinate, it also produces formate and acetate. To understand carbon flux distribution to succinate and alternative products we fed A. succinogenes [1-(13)C]glucose and analyzed the resulting isotopomers of excreted organic acids, proteinaceous amino acids, and glycogen monomers by gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The isotopomer data, together with the glucose consumption and product formation rates and the A. succinogenes biomass composition, were supplied to a metabolic flux model. Oxidative pentose phosphate pathway flux supplied, at most, 20% of the estimated NADPH requirement for cell growth. The model indicated that NADPH was instead produced primarily by the conversion of NADH to NADPH by transhydrogenase and/or by NADP-dependent malic enzyme. Transhydrogenase activity was detected in A. succinogenes cell extracts, as were formate and pyruvate dehydrogenases, which the model suggested were contributing to NADH production. Malic enzyme activity was also detected in cell extracts, consistent with the flux analysis results. Labeling patterns in amino acids and organic acids showed that oxaloacetate and malate were being decarboxylated to pyruvate. These are the first in vivo experiments to show that the partitioning of flux between succinate and alternative fermentation products can occur at multiple nodes in A. succinogenes. The implications for designing effective metabolic engineering strategies to increase A. succinogenes succinate production are discussed.  相似文献   

2.
1. The fixation of CO(2) by pyruvate carboxylase in isolated rat brain mitochondria was investigated. 2. In the presence of pyruvate, ATP, inorganic phosphate and magnesium, rat brain mitochondria fixed H(14)CO(3) (-) into tricarboxylic acid-cycle intermediates at a rate of about 250nmol/30min per mg of protein. 3. Citrate and malate were the main radioactive products with citrate containing most of the radioactivity fixed. The observed rates of H(14)CO(3) (-) fixation and citrate formation correlated with the measured activities of pyruvate carboxylase and citrate synthase in the mitochondria. 4. The carboxylation of pyruvate by the mitochondria had an apparent K(m) for pyruvate of about 0.5mm. 5. Pyruvate carboxylation was inhibited by ADP and dinitrophenol. 6. Malate, succinate, fumarate and oxaloacetate inhibited the carboxylation of pyruvate whereas glutamate stimulated it. 7. The results suggest that the metabolism of pyruvate via pyruvate carboxylase in brain mitochondria is regulated, in part, by the intramitochondrial concentrations of pyruvate, oxaloacetate and the ATP:ADP ratio.  相似文献   

3.
1. The carboxylation of pyruvate to oxaloacetate by pyruvate carboxylase in guinea-pig liver mitochondria was determined by measuring the amount of (14)C from H(14)CO(3) (-) fixed into organic acids in the presence of pyruvate, ATP, Mg(2+) and P(i). The main products of pyruvate carboxylation were malate, fumarate and citrate. Pyruvate utilization, metabolite formation and incorporation of (14)C from H(14)CO(3) (-) into these metabolites in the presence and the absence of ATP were examined. The synthesis of phosphoenolpyruvate from pyruvate and bicarbonate is minimal during continued oxidation of pyruvate. Larger amounts of phosphoenolpyruvate are formed from alpha-oxoglutarate than from pyruvate. Addition of glutamate, alpha-oxoglutarate or fumarate did not appreciably increase formation of phosphoenolpyruvate when pyruvate was used as substrate. With alpha-oxoglutarate as substrate addition of fumarate resulted in increased formation of phosphoenolpyruvate, whereas addition of succinate inhibited phosphoenolpyruvate formation. In the presence of added oxaloacetate guinea-pig liver mitochondria synthesized phosphoenolpyruvate in amount sufficiently high to play an appreciable role in gluconeogenesis. 2. Addition of fatty acids of increasing carbon chain length caused a strong inhibition of pyruvate oxidation and phosphoenolpyruvate formation, and greatly promoted carbon dioxide fixation and malate, citrate and acetoacetate accumulation. The incorporation of (14)C from H(14)CO(3) (-), [1-(14)C]pyruvate and [2-(14)C]pyruvate into organic acids formed was examined. 3. It is concluded that guinea-pig liver pyruvate carboxylase contributes significantly to gluconeogenesis and that fatty acids and metabolites play an important role in its regulation.  相似文献   

4.
The non-invasive technique of 13C nuclear magnetic resonance was applied to study glucose metabolism in vivo in the insect parasite Crithidia fasciculata. It was found that under anaerobic conditions [1-13C]glucose underwent a glycolytic pathway whose main metabolic products were identified as [2-13C]ethanol, [2-13C]succinate and [1,3-13C2]glycerol. These metabolites were excreted by C. fasciculata into the incubation medium, while in the cells [3-13C]phosphoenolpyruvate was also detected in addition to the aforementioned compounds. The C3 acid is apparently the acceptor of the primary CO2 fixation reaction, which leads in Trypanosomatids to the synthesis of succinate. By addition of sodium bicarbonate to the incubation mixture L-[3-13C]malate was detected among the excretion products, while the ethanol:succinate ratio of 2.0 in the absence of bicarbonate changed to a ratio of 0.6 in the presence of the latter. This was due to a shift of the balance between carboxylation of phosphoenolpyruvate, leading to succinate, and pyruvate decarboxylation leading to ethanol. The addition of 25% 2H2O to the incubation mixture led to the formation of [2-13C, 2-2H]ethanol derived from the prior incorporation of 2H+ into pyruvate in the reactions mediated by either pyruvate kinase or malic enzyme. However, no 2H+ incorporation into L-malate was detected, excluding the possibility that the latter was formed by carboxylation of pyruvate, and lending support to the idea that L-malate results from the carboxylation of phosphoenolpyruvate to oxaloacetate by phosphoenolpyruvate carboxykinase. The formation of [2-13C, 2-2H]-succinate under the same conditions reflected the uptake of 2H+ during the reduction of fumarate. When the incubations were carried out in the presence of 100% 2H2O, several [1-13C, 1-2H]ethanol species were detected, as well as [2-13C, 2-2H]malate and [1,3-13C2, 1,3-2H2]glycerol. The former deuterated compounds reflect the existence of NAD2H species when the incubations were carried out in 100% 2H2O, while the incorporation of 2H+ into [1,3-13C2]glycerol must be attributed to the phosphoglucose-isomerase-mediated reaction during glycolysis.  相似文献   

5.
The CO2-ratios method is applied to the analysis of abnormalities of TCA (tricarboxylic acid)-cycle metabolism in AS-30D rat ascites-hepatoma cells. This method utilizes steady-state 14CO2-production rates from pairs of tracers of the same compound to evaluate TCA-cycle flux patterns. Equations are presented that quantitatively convert CO2 ratios into estimates of probability of flux through TCA-cycle-related pathways. Results of this study indicated that the ratio of 14CO2 produced from [1,4-14C]succinate to 14CO2 produced from [2,3-14C]succinate was increased by the addition of glutamine (5 mM) to the medium. An increase in the succinate CO2 ratio is quantitatively related to an increased flux of unlabelled carbon into the TCA-cycle-intermediate pools. Analysis of 14C distribution in [14C]citrate derived from [2,3-14C]succinate indicated that flux from the TCA cycle to the acetyl-CoA-derived carbons of citrate was insignificant. Thus the increased succinate CO2 ratio observed in the presence of glutamine could only result from an increased flux of carbon into the span of the TCA cycle from citrate to oxaloacetate. This result is consistent with increased flux of glutamine to alpha-oxoglutarate in the incubation medium containing exogenous glutamine. Comparison of the pyruvate CO2 ratio, steady-state 14CO2 production from [2-14C]pyruvate versus [3-14C]pyruvate, with the succinate 14CO2 ratio detected flux of pyruvate to C4 TCA-cycle intermediates in the medium containing glutamine. This result was consistent with the observation that [14C]aspartate derived from [2-14C]pyruvate was labelled in C-2 and C-3. 14C analysis also produced evidence for flux of TCA-cycle carbon to alanine. This study demonstrates that the CO2-ratios method is applicable in the analysis of the metabolic properties of AS-30D cells. This methodology has verified that the atypical TCA-cycle metabolism previously described for AS-30D-cell mitochondria occurs in intact AS-30D rat hepatoma cells.  相似文献   

6.
Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.  相似文献   

7.
Cell suspensions of Bacteroides fragilis were allowed to ferment glucose and lactate labeled with (14)C in different positions. The fermentation products, propionate and acetate, were isolated, and the distribution of radioactivity was determined. An analysis of key enzymes of possible pathways was also made. The results of the labeling experiments showed that: (i) B. fragilis ferments glucose via the Embden-Meyerhof pathway; and (ii) there was a randomization of carbons 1, 2, and 6 of glucose during conversion to propionate, which is in accordance with propionate formation via fumarate and succinate. The enzymes 6-phosphofrucktokinase (pyrophosphate-dependent), fructose-1,6-diphosphate aldolase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, and methylmalonyl-coenzyme A mutase could be demonstrated in cell extracts. Their presence supported the labeling results and suggested that propionate is formed from succinate via succinyl-, methylmalonyl-, and propionyl-coenzyme A. From the results it also is clear that CO(2) is necessary for growth because it is needed for the formation of C4 acids. There was also a randomization of carbons 1, 2, and 6 of glucose during conversion to acetate, which indicated that pyruvate kinase played a minor role in pyruvate formation from phosphoenolpyruvate. Phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase, and malic enzyme (nicotinamide adenine dinucleotide phosphate-dependent) were present in cell extracts of B. fragilis, and the results of the labeling experiments agreed with pyruvate synthesis via oxaloacetate and malate if these acids are in equilibrium with fumarate. The conversion of [2-(14)C]- and [3-(14)C]lactate to acetate was not associated with a randomization of radioactivity.  相似文献   

8.
Succinate synthesis from exogenous malate, alpha-ketoglutarate, oxaloacetate and L-glutamate in isolated oxygen-deprived rat heart mitochondria was studied using 1H NMR. The highest rate of succinate synthesis was observed during incubation of mitochondria with a mixture of L-glutamate and oxaloacetate. When mitochondria were incubated with [U-13C] glutamate and oxaloacetate the [U-13C] succinate/succinate and aspartate/succinate ratios were equal to 2. This suggests that the succinate produced from [U-13C] alpha-keto-glutarate formed via transamination of [U-13C] glutamate with oxaloacetate by aspartate aminotransferase exceeds twofold that synthesized via oxaloacetate reduction. It may thus be expected that GTP yield in a reaction catalyzed by the succinic thiokinase will be 2 times higher that of ATP production coupled with NADH-dependent fumarate reduction.  相似文献   

9.
1. The equations derived by Heath (1968) were applied to data from experiments on rats in four metabolic states: fed, post-absorptive, starved and 2hr. after an eventually lethal injury. The data used were: (a) The fractions of label injected as C1-, C2- and C3-pyruvate (where the prefix indicates the position of labelling) that are incorporated into carbon dioxide and glucose in post-absorptive and injured rats (yields). Yields could be corrected to yields on label taken up by the liver. (b) The (C5-label in glutamate)/(total label in glutamate) ratio in the liver after C2-pyruvate in rats in all four states. (c) The distribution of label within glutamate after C2-pyruvate or C2-alanine in the livers of fed, post-absorptive and starved rats. (d) The distribution of label within glucose after C2-lactate or C2-pyruvate in starved rats. (e) The relative specific radioactivities of pyruvate, aspartate, glutamate and (in two states only) of glucose 6-phosphate after injection of [U-(14)C]glucose into rats in all four states. These data were previously published, except those after (e) and some after (b) above, which are given in this paper. 2. In addition the concentrations of pyruvate, citrate, glutamate and aspartate in the livers of post-absorptive and injured rats were found. Injury decreased glutamate and citrate concentrations and to a smaller extent aspartate and pyruvate concentrations. 3. Non-steady-state theory showed that most of the data could be used without serious error in steady-state theory. Steady-state theory correlated all but one observation (the relative yields of (14)CO(2) from C2- and C3-pyruvate) listed after (a)-(e) above within the experimental errors, and gave rough estimates of the rates of pyruvate carboxylation, conversion of pyruvate and fat into acetyl-CoA and utilization of glutamate. The main conclusions were: (a) symmetrization of label in oxaloacetate both in the mitochondrion and in the cytoplasm was far from complete, because oxaloacetate did not equilibrate with fumarate in either. From this and other findings it was deduced: (b) that malate or fumarate or both left the mitochondrion, and not oxaloacetate; (c) that there was a loss from the mitochondrion of a fraction of the malate or fumarate or both formed from succinate, and (d) the resulting deficiency of oxaloacetate for the perpetuation of the tricarboxylic acid cycle was made up from pyruvate in fed and post-absorptive rats, but (e) in the starved rat could only be made up by utilization of glutamate. (f) In the fed rat the tricarboxylic acid cycle ran mostly on pyruvate, but in the post-absorptive and starved rat mostly on fat. (g) In the injured rat the tricarboxylic acid cycle was slowed, label in oxaloacetate was completely symmetrized (cf. conclusion a), and the tricarboxylic acid cycle utilized glutamate. (h) The conclusions were not invalidated by isotopic exchange, i.e. flux of label without net flux of compound, nor by interaction with lipogenic processes. (i) In the kidneys interaction between the tricarboxylic acid cycle and gluconeogenesis was different from in the liver, and was much less. The effects on the theory were roughly assessed, and were small. 4. The experiments and optimum experimental conditions required to check the theory are listed, and several predictions, open to experimental confirmation, are made.  相似文献   

10.
Sriram G  Fulton DB  Shanks JV 《Phytochemistry》2007,68(16-18):2243-2257
Methods for accurate and efficient quantification of metabolic fluxes are desirable in plant metabolic engineering and systems biology. Toward this objective, we introduce the application of "bondomers", a computationally efficient and intuitively appealing alternative to the commonly used isotopomer concept, to flux evaluation in plants, by using Catharanthus roseus hairy roots as a model system. We cultured the hairy roots on (5% w/w U-(13)C, 95% w/w naturally abundant) sucrose, and acquired two-dimensional [(13)C, (1)H] and [(1)H, (1)H] NMR spectra of hydrolyzed aqueous extract from the hairy roots. Analysis of these spectra yielded a data set of 116 bondomers of beta-glucans and proteinogenic amino acids from the hairy roots. Fluxes were evaluated from the bondomer data by using comprehensive bondomer balancing. We identified most fluxes in a three-compartmental model of central carbon metabolism with good precision. We observed parallel pentose phosphate pathways in the cytosol and the plastid with significantly different fluxes. The anaplerotic fluxes between phosphoenolpyruvate and oxaloacetate in the cytosol and between malate and pyruvate in the mitochondrion were relatively high (60.1+/-2.5 mol per 100 mol sucrose uptake, or 22.5+/-0.5 mol per 100 mol mitochondrial pyruvate dehydrogenase flux). The development of a comprehensive flux analysis tool for this plant hairy root system is expected to be valuable in assessing the metabolic impact of genetic or environmental changes, and this methodology can be extended to other plant systems.  相似文献   

11.
Rat hearts were perfused with mixtures of [3-(13)C]pyruvate and [3-(13)C]lactate (to alter cytosolic redox) at low (0.5 mM) or high (2.5 mM) Ca(2+) concentrations to alter contractility. Hearts were frozen at various times after exposure to these substrates, were extracted, and were then analyzed by (13)C NMR spectroscopy. The time-dependent multiplets observed in the (13)C NMR resonances of glutamate in all hearts and in malate and aspartate in hearts perfused with high-pyruvate/low-lactate concentrations were analyzed using a kinetic model of the tricarboxylic acid (TCA) cycle. The analysis showed that TCA cycle flux (V(TCA)) and exchange flux (V(X)) that involved cycle intermediates were both sensitive to cell redox and altered Ca(2+) concentration, and the ratio of these fluxes (V(X)/V(TCA)) varied >10-fold.  相似文献   

12.
C(4) plants have up to 10-fold higher apparent CO(2) assimilation rates than the most productive C(3) plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C(4) plants in comparison with those of C(3) plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C(4) plants, such as malate, pyruvate, oxaloacetate, and phosphoenolpyruvate, must be considerably higher in C(4) plants because they exceed the apparent rate of photosynthetic CO(2) assimilation, whereas they represent relatively minor fluxes in C(3) plants. While the enzymatic steps involved in the C(4) biochemical inorganic carbon pump have been studied in much detail, little is known about the metabolite transporters in the envelope membranes of C(4) chloroplasts. In this study, we used comparative proteomics of chloroplast envelope membranes from the C(3) plant pea (Pisum sativum) and mesophyll cell chloroplast envelopes from the C(4) plant maize (Zea mays) to analyze the adaptation of the mesophyll cell chloroplast envelope proteome to the requirements of C(4) photosynthesis. We show that C(3)- and C(4)-type chloroplasts have qualitatively similar but quantitatively very different chloroplast envelope membrane proteomes. In particular, translocators involved in the transport of triosephosphate and phosphoenolpyruvate as well as two outer envelope porins are much more abundant in C(4) plants. Several putative transport proteins have been identified that are highly abundant in C(4) plants but relatively minor in C(3) envelopes. These represent prime candidates for the transport of C(4) photosynthetic intermediates, such as pyruvate, oxaloacetate, and malate.  相似文献   

13.
Xenopus laevis oocytes and embryos are glycogenic cells, metabolizing sugar phosphates into glycogen. These cells have very low pyruvate kinase activity in vivo and, consequently, make little pyruvate and lactate through glycolysis. Nevertheless, oocytes and embryos do contain significant pyruvate and lactate levels. To determine the source of carbon for sugar phosphates and pyruvate, 14C-labeled intermediary metabolites were injected into fertilized eggs and their metabolism examined by thin-layer chromatography. Alanine, pyruvate, and lactate form a pool of carbon that fluxes into sugar phosphates. Cytosolic (nonmitochondrial) aspartate, oxaloacetate, and malate form a pool of carbon which is largely blocked in the short-term from entering the smaller alanine/pyruvate/lactate pool. The data indicate that the major source of carbon for sugar phosphates in fertilized eggs and rapidly cleaving embryos is the alanine/pyruvate/lactate pool. Pyruvate from this pool is converted in the mitochondria to phosphoenolpyruvate, which in turn is metabolized outside the mitochondria to sugar phosphates. A key enzyme in regulating flux from amino acid carbon to pyruvate is malic enzyme. Three malic enzyme isozymes, one soluble and two mitochondrial, were partially isolated and kinetically characterized from total ovarian tissue. Full-grown oocytes and eggs, however, have very low soluble malic enzyme activity, which results in the separation of the cytosolic aspartate/oxaloacetate/malate and alanine/pyruvate/lactate pools.  相似文献   

14.
Corynebacterium glutamicum possesses high in vivo activity of the gluconeogenic phosphoenolpyruvate carboxykinase (PEPCk) during growth on glucose, resulting together with anaplerotic carboxylation reactions in a PEP/pyruvate/oxaloacetate substrate cycle. The present study investigated the changes in intracellular fluxes and metabolite concentrations that are caused by altered PEPCk activity in L-lysine-producing C. glutamicum MH20-22B, applying a recently developed (13)C labeling-based strategy for anaplerotic flux resolution and quantification. Abolition of PEPCk activity by deletion of the respective pck gene resulted in increased intracellular concentrations of oxaloacetate L-aspartate, alpha-ketoglutarate, pyruvate, and L-lysine and in a 60% enhanced flux toward L-lysine biosynthesis, whereas increasing the PEPCk activity by pck overexpression had opposite effects. The results of the combined measurements of enzyme activities, in vivo fluxes, and metabolite concentrations were exploited to elucidate the in vivo regulation of anaplerotic reactions in C. glutamicum, and implications for the metabolic engineering of amino-acid-producing strains are discussed.  相似文献   

15.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Previous attempts to account for the labelling in vivo of liver metabolites associated with the citrate cycle and gluconeogenesis have foundered because proper allowance was not made for the heterogeneity of the liver. In the basal state (anaesthetized after 24h starvation) this heterogeneity is minimal, and we show that labelling by [14C]bicarbonate can be interpreted unambiguously. [14C]Bicarbonate was infused to an isotopic steady state, and measurements were made of specific radioactivities of blood bicarbonate, alanine, glycerol and lactate, of liver alanine and lactate, and of individual carbon atoms in blood glucose and liver aspartate, citrate and malate. (Existing methods for several of these measurements were extensively modified.) The results were combined with published rates of gluconeogenesis, uptake of gluconeogenic precursors by the liver, and citrate-cycle flux, all measured under similar conditions, and with estimates of other rates made from published data. To interpret the results, three ancillary measurements were made: the rate of CO2 exchange by phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) under conditions that simulated those in vivo; the 14C isotope effect in the pyruvate carboxylase (EC 6.4.1.1) reaction (14C/12C = 0.992 +/- 0.008; S.E.M., n = 8); the ratio of labelling by [2-14C]- to that by [1-14C]-pyruvate of liver glutamate 1.5 min after injection. This ratio, 3.38, is a measure of the disequilibrium in the mitochondria between malate and oxaloacetate. The data were analysed with due regard to experimental variance, uncertainties in values of fluxes measured in vitro, hepatic heterogeneity and renal glucose output. The following conclusions were reached. The results could not be explained if CO2 fixation was confined to pyruvate carboxylase and there was only one, well-mixed, pool of oxaloacetate in the mitochondria. Addition of the other carboxylation reactions, those of PEPCK, isocitrate dehydrogenase (EC 1.1.1.42) and malic enzyme (EC 1.1.1.40), was not enough. Incomplete mixing of mitochondrial oxaloacetate had to be assumed, i.e. that there was metabolic channelling of oxaloacetate formed from pyruvate towards gluconeogenesis. There was some evidence that malate exchange across the mitochondrial membrane might also be channelled, with incomplete mixing with that in the citrate cycle. Calculated rates of exchange of CO2 by PEPCK were in agreement with those measured in vitro, with little or no activation by Fe2+ ions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
1. When [2-(14)C]pyruvate is injected into rats the C3-position of liver glutamate becomes more heavily labelled than the C2-position, thus establishing that oxaloacetate and fumarate are not in equilibrium in rat liver mitochondria in vivo. The amount of disequilibrium was shown to be simply related to the value that the C3-label/C2-label ratio would have were no label recycled. This ratio, z, was calculated for post-absorptive rats in environmental temperatures of 20 degrees and 30 degrees C from determinations of the distribution of label within glutamate 1, 3 and 10min after intravenous injection of [2-(14)C]pyruvate. The values of z (best estimate and range) were 1.65 (1.60-1.69) in rats at 20 degrees C and 2.43 (2.23-2.63) in rats at 30 degrees C. These values of z imply the following rates of interconversion in mitochondria of fumarate and oxaloacetate (in terms of the oxaloacetate-->citrate flux, R) in rats at 20 degrees C: [Formula: see text] and in rats at 30 degrees C: [Formula: see text] 2. The kinetic parameters of malate dehydrogenase and fumarate hydratase and the intramitochondrial concentrations of NAD(+) and NADH under (as far as could be judged) conditions in vivo were collated. From them and the best estimates of R now available were calculated the rates of interconversion of fumarate, malate and oxaloacetate required to give the found values of z. These rates showed that the fumarate hydratase reaction was nearly in equilibrium, but that the malate dehydrogenase reaction was considerably out of equilibrium. The calculations also led to the following conclusions. 3. In livers of rats at 20 degrees and 30 degrees C mitochondrial malate concentrations were respectively about 5 and 1.5 times mean cellular concentrations. 4. Mitochondrial oxaloacetate concentrations were less than 0.2 of the mean cellular concentrations. They were also only 0.65 and 0.55 of the equilibrium concentrations for the malate dehydrogenase reaction in rats at 20 degrees and 30 degrees C respectively. 5. Malate dehydrogenase activity was low because of the very low oxaloacetate concentrations in the mitochondria and the very small fraction of the enzyme complexed with NAD(+), i.e. in each direction one substrate concentration was very sub-optimal.  相似文献   

18.
The goal of this study was to measure flux through pyruvate carboxylation and decarboxylation in the heart in vivo. These rates were measured in the anterior wall of normal anesthetized swine hearts by infusing [U-(13)C(3)]lactate and/or [U-(13)C(3)] pyruvate into the left anterior descending (LAD) coronary artery. After 1 h, the tissue was freeze-clamped and analyzed by gas chromatography-mass spectrometry for the mass isotopomer distribution of citrate and its oxaloacetate moiety. LAD blood pyruvate and lactate enrichments and concentrations were constant after 15 min of infusion. Under near-normal physiological concentrations of lactate and pyruvate, pyruvate carboxylation and decarboxylation accounted for 4.7 +/- 0.3 and 41.5 +/- 2.0% of citrate formation, respectively. Similar relative fluxes were found when arterial pyruvate was raised from 0.2 to 1.1 mM. Addition of 1 mM octanoate to 1 mM pyruvate inhibited pyruvate decarboxylation by 93% without affecting carboxylation. The absence of M1 and M2 pyruvate demonstrated net irreversible pyruvate carboxylation. Under our experimental conditions we found that pyruvate carboxylation in the in vivo heart accounts for at least 3-6% of the citric acid cycle flux despite considerable variation in the flux through pyruvate decarboxylation.  相似文献   

19.
This study used in vitro 13C NMR spectroscopy to directly examine bidirectional reactions of the Wood-Werkman cycle involved in central carbon metabolic pathways of dairy propionibacteria during pyruvate catabolism. The flow of [2-13C]pyruvate label was monitored on living cell suspensions of Propionibacterium freudenreichii subsp. shermanii and Propionibacterium acidipropionici under acidic conditions. P. shermanii and P. acidipropionici cells consumed pyruvate at apparent initial rates of 161 and 39 micromol min(-1) g(-1) (cell dry weight), respectively. The bidirectionality of reactions in the first part of the Wood-Werkman cycle was evident from the formation of intermediates such as [3-13C]pyruvate and [3-13C]malate and of products like [2-13C]acetate from [2-13C]pyruvate. For the first time alanine labeled on C2 and C3 and aspartate labeled on C2 and C3 were observed during [2-13C]pyruvate metabolism by propionibacteria. The kinetics of aspartate isotopic enrichment was evidence for its production from oxaloacetate via aspartate aminotransferase. Activities of a partial tricarboxylic acid pathway, acetate synthesis, succinate synthesis, gluconeogenesis, aspartate synthesis, and alanine synthesis pathways were evident from the experimental results.  相似文献   

20.
The physiological state of CHO cells in perfusion culture was quantified by determining fluxes through the bioreaction network using 13C glucose and 2D-NMR spectroscopy. CHO cells were cultivated in a 2.5 L perfusion bioreactor with glucose and glutamine as the primary carbon and energy sources. The reactor was inoculated at a cell density of 8×106 cells/mL and operated at ~10×106 cells/mL using unlabeled glucose for the first 13 days. The second phase lasted 12 days and the medium consisted of 10% [U-13C]glucose, 40% labeled [1-13C]glucose with the balance unlabeled. After the culture attained isotopic steady state, biomass samples from the last 3 days of cultivation were considered representative and used for flux estimation. They were hydrolyzed and analyzed by 2D [13C, 1H] COSY measurements using the heteronuclear single quantum correlation sequence with gradients for artifacts suppression. Metabolic fluxes were determined using the 13C-Flux software package by minimizing the residuals between the experimental and the simulated NMR data. Normalized residuals exhibited a Gaussian distribution indicating good model fit to experimental data. The glucose consumption rate was 5-fold higher than that of glutamine with 41% of glucose channeled through the pentose phosphate pathway. The fluxes at the pyruvate branch point were almost equally distributed between lactate and the TCA cycle (55% and 45%, respectively). The anaplerotic conversion of pyruvate to oxaloacetate by pyruvate carboxylase accounted for 10% of the pyruvate flux with the remaining 90% entering the TCA cycle through acetyl-CoA. The conversion of malate to pyruvate catalyzed by the malic enzyme was 70% higher than that for the anaplerotic reaction catalyzed by pyruvate carboxylase. Most amino acid catabolic and biosynthetic fluxes were significantly lower than the glycolytic and TCA cycle fluxes. Metabolic flux data from NMR analysis validated a simplified model where metabolite balancing was used for flux estimation. In this reduced flux space, estimates from these two methods were in good agreement. This simplified model can routinely be used in bioprocess development experiments to estimate metabolic fluxes with much reduced analytical investment. The high resolution flux information from 2D-NMR spectroscopy coupled with the capability to validate a simplified metabolite balancing based model for routine use make 13C-isotopomer analysis an attractive bioprocess development tool for mammalian cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号