首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Control coefficients were used to describe the degree to which ribulose bisphosphate carboxylase/oxygenase (Rubisco) limits the steady-state rate of CO2 assimilation in sunflower leaves from plants grown at high (800 μmol mol−1) and low (350 μmol mol−1) CO2. The magnitude of a control coefficient is approximately the percentage change in the flux that would result from a 1% rise in enzyme active site concentration. In plants grown at low CO2, leaves of different ages varied considerably in their photosynthetic capacities. In a saturating light flux and an ambient CO2 concentration of 350 μmol mol−1, the Rubisco control coefficient was about 0.7 in all leaves, indicating that Rubisco activity largely limited the assimilation flux. The Rubisco control coefficient for leaves grown at 350 μmol mol−1 CO2 dropped to about zero when the ambient CO2 concentration was raised to 800 μmol mol−1. In relatively young, fully expanded leaves of plants grown at high CO2, the Rubisco control coefficient was also about 0.7 at a saturating light flux and at the CO2 concentration at which the plants were grown (800 μmol mol−1). This apparently resulted from a decrease in the concentration of Rubisco active sites. In older leaves, however, the control coefficient was about 0.2. Because, on the whole, Rubisco activity still largely limits the assimilation flux in plants grown at high CO2, the kinetics of this enzyme can still be used to model photosynthesis under these conditions. The relatively high Rubisco control coefficient under enhanced CO2 indicates that the young sunflower leaves have the capacity to acclimate their photosynthetic biochemistry in a way consistent with an optimal use of protein resources.  相似文献   

2.
The atmospheric CO2 concentration has increased from the pre-industrial concentration of about 280 μmol mol−1 to its present concentration of over 350 μmol mol−1, and continues to increase. As the rate of photosynthesis in C3 plants is strongly dependent on CO2 concentration, this should have a marked effect on photosynthesis, and hence on plant growth and productivity. The magnitude of photo-synthetic responses can be calculated based on the well-developed theory of photosynthetic response to intercellular CO2 concentration. A simple biochemically based model of photosynthesis was coupled to a model of stomatal conductance to calculate photosynthetic responses to ambient CO2 concentration. In the combined model, photosynthesis was much more responsive to CO2 at high than at low temperatures. At 350 μmol mol−1, photosynthesis at 35°C reached 51% of the rate that would have been possible with non-limiting CO2, whereas at 5°C, 77% of the CO2 non-limited rate was attained. Relative CO2 sensitivity also became smaller at elevated CO2, as CO2 concentration increased towards saturation. As photosynthesis was far from being saturated at the current ambient CO2 concentration, considerable further gains in photosynthesis were predicted through continuing increases in CO2 concentration. The strong interaction with temperature also leads to photosynthesis in different global regions experiencing very different sensitivities to increasing CO2 concentrations.  相似文献   

3.
Winter wheat (Triticum aestivum L., cv. Mercia) was grown at two different atmospheric CO2 concentrations (350 and 700 μmol mol−1), two temperatures [ambient temperature (i.e. tracking the open air) and ambient +4°C] and two rates of nitrogen supply (equivalent to 489 kg ha−1 and 87 kg ha−1). Leaves grown at 700 μmol mol−1 CO2 had slightly greater photosynthetic capacity (10% mean increase over the experiment) than those grown at ambient CO2 concentration, but there were no differences in carboxylation efficiency or apparent quantum yield. The amounts of chlorophyll, soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit leaf area did not change with long-term exposure to elevated CO2 concentration. Thus winter wheat, grown under simulated field conditions, for which total biomass was large compared to normal field production, did not experience loss of components of the photosynthetic system or loss of photosynthetic competence with elevated CO2 concentration. However, nitrogen supply and temperature had large effects on photosynthetic characteristics but did not interact with elevated CO2 concentration. Nitrogen deficiency resulted in decreases in the contents of protein, including Rubisco, and chlorophyll, and decreased photosynthetic capacity and carboxylation efficiency. An increase in temperature also reduced these components and shortened the effective life of the leaves, reducing the duration of high photosynthetic capacity.  相似文献   

4.
This study investigated the effects of a gradual versus step increases in carbon dioxide (CO2) on plant photosynthesis and growth at two nitrogen (N) levels. Plantago lanceolata were grown for 80 days and then treated with the ambient CO2 (as the control), gradual CO2 increase and step CO2 increase as well as low and high N additions for 70 days. While [CO2] were kept at constant 350 and 700 μmol mol−1 for the ambient and step CO2 treatments, respectively, [CO2] in the gradual CO2 treatment was raised by 5 μmol mol−1 day−1, beginning at 350 μmol mol−1 and reaching 700 μmol mol−1 by the end of experiment. The step CO2 treatment immediately resulted in an approximate 50% increase in leaf photosynthetic carbon fixation at both the low and high N additions, leading to a 20–24% decrease in leaf N concentration. The CO2-induced nitrogen stress, in return, resulted in partial photosynthetic downregulation since the third week at the low N level and the fourth week at the high N level after treatments. In comparison, the gradual CO2 treatment induced a gradual increase in photosynthetic carbon fixation, leading to less reduction in leaf N concentration. In comparison to the ambient CO2, both the gradual and step CO2 increases resulted in decreases in specific leaf area, leaf N concentration but an increase in plant biomass. Responses of plant shoot:root ratio to CO2 treatments varied with N supply. It decreased with low N supply and increased with high N supply under the gradual and step CO2 treatments relative to that under the ambient CO2. Degrees of those changes in physiological and growth parameters were usually larger under the step than the gradual CO2 treatments, largely due to different photosynthetic C influxes under the two CO2 treatments.  相似文献   

5.
Stands of carrot (Daucus carota L.) were grown in the field within polyethylene-covered tunnels at a range of soil temperatures (from a mean of 7·5°C to 10·9°C) at either 348 (SE = 4·7) or 551 (SE = 7·7) μmol mol−1 CO2. The effect of increased atmospheric CO2 concentration on root yield was greater than that on total biomass. At the last harvest (137d from sowing), total biomass was 16% (95% CI = 6%, 27%) greater at 551 than at 348 μmol mol−1 CO2, and 37% (95% CI = 30%, 44%) greater as a result of a 1°C rise in soil temperature. Enrichment with CO2 or a 1°C rise in soil temperature increased root yield by 31% (95% CI = 19%, 45%) and 34% (95% CI = 27%, 42%), respectively, at this harvest. No effect on total biomass or root yield of an interaction between temperature and atmospheric CO2 concentration at 137 DAS was detected. When compared at a given leaf number (seven leaves), CO2 enrichment increased total biomass by 25% and root yields by 80%, but no effect of differences in temperature on plant weights was found. Thus, increases in total biomass and root yield observed in the warmer crops were a result of the effects of temperature on the timing of crop growth and development. Partitioning to the storage roots during early root expansion was greater at 551 than at 348 μmol mol−1 CO2. The root to total weight ratio was unaffected by differences in temperature at 551 μmol mol−1CO2, but was reduced by cooler temperatures at 348 μmol mol−1 CO2. At a given thermal time from sowing, CO2 enrichment increased the leaf area per plant, particularly during early root growth, primarily as a result of an increase in the rate of leaf area expansion, and not an increase in leaf number.  相似文献   

6.
We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 μmol m−2 s−1) and using two CO2 concentrations, 360 and 1200 μmol mol−1. Photosynthetically active radiation (400–700 nm) was attenuated slightly faster through canopies grown in 360μmol mol−1 than through canopies grown in 1200μmol mol−1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200μmol mol−1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p≤ 0.05) than for canopies grown in 360μmol mol−1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 °C over 5d increased starch, fructan and glucose levels in canopies grown in 1200μmol mol−1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.  相似文献   

7.
The effects of atmospheric CO2 enrichment and root restriction on photosynthetic characteristics and growth of banana (Musa sp. AAA cv. Gros Michel) plants were investigated. Plants were grown aeroponically in root chambers in controlled environment glasshouse rooms at CO2 concentrations of 350 or 1 000 μmol CO2 mol-1. At each CO2 concentration, plants were grown in large (2001) root chambers that did not restrict root growth or in small (20 1) root chambers that restricted root growth. Plants grown at 350 μmol CO2 mol-1 generally had a higher carboxylation efficiency than plants grown at 1 000 μmol CO2 mol-1 although actual net CO2 assimilation (A) was higher at the higher ambient CO2 concentration due to increased intercellular CO2 concentrations (Ci resulting from CO2 enrichment. Thus, plants grown at 1 000 μmol CO2 mol-1 accumulated more leaf area and dry weight than plants grown at 350 μmol CO2 mol-1. Plants grown in the large root chambers were more photosynthetically efficient than plants grown in the small root chambers. At 350 μmol CO2 mol-1, leaf area and dry weights of plant organs were generally greater for plants in the large root chambers compared to those in the small root chambers. Atmospheric CO2 enrichment may have compensated for the effects of root restriction on plant growth since at 1 000 μmol CO2 mol-1 there was generally no effect of root chamber size on plant dry weight.  相似文献   

8.
It was hypothesized that high CO2 availability would increase monoterpene emission to the atmosphere. This hypothesis was based on resource allocation theory which predicts increased production of plant secondary compounds when carbon is in excess of that required for growth. Monoterpene emission rates were measured from needles of (a) Ponderosa pine grown at different CO2 concentrations and soil nitrogen levels, and (b) Douglas fir grown at different CO2 concentrations. Ponderosa pine grown at 700 μmol mol–1 CO2 exhibited increased photosynthetic rates and needle starch to nitrogen (N) ratios when compared to trees grown at 350 μmol mol–1 CO2. Nitrogen availability had no consistent effect on photosynthesis. Douglas fir grown at 550 μmol mol–1 CO2 exhibited increased photosynthetic rates as compared to growth at 350 μmol mol–1 CO2 in old, but not young needles, and there was no influence on the starch/N ratio. In neither species was there a significant effect of elevated growth CO2 on needle monoterpene concentration or emission rate. The influence of climate warming and leaf area index (LAI) on monoterpene emission were also investigated. Douglas fir grown at elevated CO2 plus a 4 °C increase in growth temperature exhibited no change in needle monoterpene concentration, despite a predicted 50% increase in emission rate. At elevated CO2 concentration the LAI increased in Ponderosa pine, but not Douglas fir. The combination of increased LAI and climate warming are predicted to cause an 80% increase in monoterpene emissions from Ponderosa pine forests and a 50% increase in emissions from Douglas fir forests. This study demonstrates that although growth at elevated CO2 may not affect the rate of monoterpene emission per unit biomass, the effect of elevated CO2 on LAI, and the effect of climate warming on monoterpene biosynthesis and volatilization, could increase canopy monoterpene emission rate.  相似文献   

9.
The interactive effects of increased carbon dioxide (CO2) concentration and ultraviolet-B (UV-B, 280–320 nm) radiation on Acacia karroo Hayne, a C3 tree, and Themeda triandra Forsk., a C4 grass, were investigated. We tested the hypothesis that A. karroo would show greater CO2-induced growth stimulation than T. triandra, which would partially explain current encroachment of A. karroo into C4 grasslands, but that increased UV-B could mitigate this advantage. Seedlings were grown in open-top chambers in a greenhouse in ambient (360 μmol mol-1) and elevated (650 μmol mol-1) CO2, combined with ambient (1.56 to 8.66 kJ m-2 day-1) or increased (2.22 to 11.93 kJ m-2 day-1) biologically effective (weighted) UV-B irradiances. After 30 weeks, elevated CO2 had no effect on biomass of A. karroo, despite increased net CO2 assimilation rates. Interaction between UV-B and CO2 on stomatal conductance was found, with conductances decreasing only where elevated CO2 and UV-B were supplied separately. Increases in water use efficiencies, foliar starch concentrations, root nodule numbers and total nodule mass were measured in elevated CO2. Elevated UV-B caused only an increase in foliar carbon concentrations. In T. triandra, net CO2 assimilation rates were unaffected in elevated CO2, but stomatal conductances and foliar nitrogen concentrations decreased, and water use efficiencies increased. Biomass of all vegetative fractions, particularly leaf sheaths, was increased in elevated CO2. and was accompanied by increased leaf blade lengths and individual leaf and leaf sheath masses. However, tiller numbers were reduced in elevated CO2. Significantly moderating effects of elevated UV-B were apparent only in individual masses of leaf blades and sheaths, and in total sheath and shoot biomass. The direct CO2-induced growth responses of the species therefore do not support the hypothesis of CO2-driven woody encroachment of C4 grasslands. Rather, differential changes in resource use efficiency between grass and woody species, or morphological responses of grass species, could alter the competitive balance. Increased UV-B radiation is unlikely to substantially alter the CO2 response of these species.  相似文献   

10.
Future climate change is projected to include a strong likelihood of continued increases in atmospheric carbon dioxide concentration ([CO2]) and possible shifts in precipitation patterns. Due mainly to uncertainties in the timing and amounts of monsoonal rainfall, drought is common in rainfed rice production systems. The objectives of this study were to quantify the effects and possible interactions of [CO2] and drought stress on rice (Oryza sativa, L.) photosynthesis, evapotranspiration and water-use efficiency. Rice (cv. IR-72) was grown to maturity in eight naturally sunlit, plant growth chambers in atmospheric carbon dioxide concentrations [CO2] of 350 and 700 μmol CO2 mol–1 air. In both [CO2], water management treatments included continuously flooded controls, flood water removed and drought stress imposed at panicle initiation, anthesis, and both panicle initiation and anthesis. Potential acclimation of rice photosynthesis to long-term [CO2] growth treatments of 350 and 700 μmol mol–1 was tested by comparing canopy photosynthesis rates across short-term [CO2] ranging from 160 to 1000 μmol mol–1. These tests showed essentially no acclimation response with photosynthetic rate being a function of current short-term [CO2] rather than long-term [CO2] growth treatment. In both long-term [CO2] treatments, photosynthetic rate saturated with respect to [CO2] near 510 μmol mol–1. Carbon dioxide enrichment significantly increased both canopy net photosynthetic rate (21–27%) and water-use efficiency while reducing evapotranspiration by about 10%. This water saving under [CO2] enrichment allowed photosynthesis to continue for about one to two days longer during drought in the enriched compared with the ambient [CO2] control treatments.  相似文献   

11.
Gas exchange and dry-weight production in Opuntia ficus-indica, a CAM species cultivated worldwide for its fruit and cladodes, were studied in 370 and 750 μmol mol−1 CO2 at three photosynthetic photon flux densities (PPFD: 5, 13 and 20 mol m−2 d−1). Elevated CO2 and PPFD enhanced the growth of basal cladodes and roots during the 12-week study. A rise in the PPFD increased the growth of daughter cladodes; elevated CO2 enhanced the growth of first-daughter cladodes but decreased the growth of the second-daughter cladodes produced on them. CO2 enrichment enhanced daily net CO2 uptake during the initial 8 weeks after planting for both basal and first-daughter cladodes. Water vapour conductance was 9 to 15% lower in 750 than in 370 μmol mol−1 CO2. Cladode chlorophyll content was lower in elevated CO2 and at higher PPFD. Soluble sugar and starch contents increased with time and were higher in elevated CO2 and at higher PPFD. The total plant nitrogen content was lower in elevated CO2. The effect of elevated CO2 on net CO2 uptake disappeared at 12 weeks after planting, possibly due to acclimation or feedback inhibition, which in turn could reflect decreases in the sink strength of roots. Despite this decreased effect on net CO2 uptake, the total plant dry weight at 12 weeks averaged 32% higher in 750 than in 370 μmol mol−1 CO2. Averaged for the two CO2 treatments, the total plant dry weight increased by 66% from low to medium PPFD and by 37% from medium to high PPFD.  相似文献   

12.
Continually rising atmospheric CO2 concentrations and possible climatic change may cause significant changes in plant communities. This study was undertaken to investigate gas exchange in two important grass species of the short-grass steppe, Pascopyrum smithii (western wheat-grass), C3, and Bouteloua gracilis (blue grama), C4, grown at different CO2 concentrations and temperatures. Intact soil cores containing each species were extracted from grasslands in north-eastern Colorado, USA, placed in growth chambers, and grown at combinations of two CO2 concentrations (350 and 700 μmol mol−1) and two temperature regimes (field average and elevated by 4°C). Leaf gas exchange was measured during the second, third and fourth growth seasons. All plants exhibited higher leaf CO2 assimilation rates (A) with increasing measurement CO2 concentration, with greater responses being observed in the cool-season C3 species P. smithii. Changes in the shape of intercellular CO2 response curves of A for both species indicated photosynthetic acclimation to the different growth environments. The photosynthetic capacity of P. smithii leaves tended to be reduced in plants grown at high CO2 concentrations, although A for plants grown and measured at 700μmol mol−1 CO2 was 41% greater than that in plants grown and measured at 350 μmol mol−1 CO2. Low leaf N concentration may have contributed to photosynthetic acclimation to CO2. A severe reduction in photosynthetic capacity was exhibited in P. smithii plants grown long-term at elevated temperatures. As a result, the potential response of photosynthesis to CO2 enrichment was reduced in P. smithii plants grown long-term at the higher temperature.  相似文献   

13.
Wheat (Triticum aestivum L. cv Bannock), rice (Oryza sativa L. cv IR-36), and soybean (Glycine max [L.] Merr cv Essex) were grown in a factorial greenhouse experiment to determine if CO2-induced increases in photosynthesis, biomass, and yield are modified by increases in ultraviolet (UV)-B radiation corresponding to stratospheric ozone depletion. The experimental conditions simulated were: (a) an increase in CO2 concentration from 350 to 650 microliters per liter; (b) an increase in UV-B radiation corresponding to a 10% ozone depletion at the equator; and (c) a and b in combination. Seed yield and total biomass increased significantly with elevated CO2 in all three species when compared to the control. However, with concurrent increases in UV-B and CO2, no increase in either seed yield (wheat and rice) or total biomass (rice) was observed with respect to the control. In contrast, CO2-induced increases in seed yield and total plant biomass were maintained or increased in soybean within the elevated CO2, UV-B environment. Whole leaf gas exchange indicated a significant increase in photosynthesis, apparent quantum efficiency (AQE) and water-use-efficiency (WUE) with elevated CO2 in all 3 species. Including elevated UV-B radiation with high CO2 eliminated the effect of high CO2 on photosynthesis and WUE in rice and the increase in AQE associated with high CO2 in all species. Elevated CO2 did not change the apparent carboxylation efficiency (ACE) in the three species although the combination of elevated CO2 and UV-B reduced ACE in wheat and rice. The results of this experiment illustrate that increased UV-B radiation may modify CO2-induced increases in biomass, seed yield and photosynthetic parameters and suggest that available data may not adequately characterize the potential effect of future, simultaneous changes in CO2 concentration and UV-B radiation.  相似文献   

14.
Responses of tomato leaves in a greenhouse to light and CO2 were examined at the transient stage at the end of winter, when both photoperiod and irradiance gradually increase. Additionally, CO2 fluxes were calculated for a greenhouse without supplementary lighting and without CO2 enrichment based on CO2 sinks (plant photosynthesis) and CO2 sources (plant and substrate respiration). In January, tomato leaves in the greenhouse showed low photosynthesis with a maximum assimilation of 6–8 μmol CO2 m−2 s−1, a quantum yield of 0.06 μmol CO2 μmol−1 photosynthetic active radiation (PAR) and a low light compensation point of 26 μmol PAR m−2 s−1, a combination which classifies them as shade leaves. In February, tomato leaves increased their light compensation point to 39 μmol PAR m−2 s−1 and quantum yield to 0.08, the former indicating the adaptation to increased irradiance and photoperiod. These tomato leaves increased their transpiration from 0.4 to 0.9 in January to ∼2 mmol H2O m−2 s−1 in February. Both photosynthesis and transpiration were primarily limited by light but neither by stomatal conductivity nor by CO2. In January, light response of photosynthesis, dark respiration and transpiration were negligibly affected by increasing CO2 concentrations from 600 to 900 ppm CO2 under low light conditions, indicating no benefit of CO2 enrichment unless light intensity increased. In February, tomato leaves were photoinhibited at inherent greenhouse CO2 concentrations on the first sunny day; this photoinhibition was further enhanced by an increased CO2 concentration of 1000 ppm. CO2 fluxes in the greenhouse appeared strongly dependent on solar radiation. After exceeding the light compensation point in the morning, greenhouse CO2 concentrations decreased by 58 or by 110 ppm CO2 h−1 on a sunny day in January or February and by 23 ppm on overcast days in both months. Calculated per overall tomato canopy, plant photosynthesis contributed 42–50% to the morning CO2 depletion in the greenhouse. Dark respiration of tomato leaves was ∼2 μmol CO2 m−2 s−1 in January and ∼3 μmol CO2 m−2 s−1 in February. This dark respiration resulted in rises of 15 and 17 ppm CO2 h−1 at night in the greenhouse compartment and was identified as primary source of CO2. Respiration of the substrate used to grow the plants, which produced 7.3 ppm CO2 h−1, was identified as secondary source of CO2. The combined plant and substrate respiration resulted in peaks of up to 900 ppm CO2 in the greenhouse before dawn.  相似文献   

15.
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed.  相似文献   

16.
Abstract: The hypothesis for the present work was that photosynthetic acclimation to increased atmospheric CO2 in Nicotiana tabacum could be prevented by an oscillating supply of CO2. This was tested by growing half of the plants (for the 20 day period after sowing) at 700 μmol mol‐1 CO2 (S+ plants) and half at 350 μmol mol‐1 CO2 (S‐ plants) and thereafter switching them every 48 h from high to low CO2 and vice versa. These plants were compared with plants continuously kept (from sowing onwards) at 350 μmol mol‐1 CO2 (C‐ plants) and 700 μmol mol‐1 CO2 (C+ plants). Switching plants from high to low CO2 and vice versa (S+ and S‐) did not improve plant growth efficiency, as hypothesized. The extra carbon fixed by the leaves under increased CO2 in the atmosphere, supplied either continuously or intermittently, was mostly stored as starch and not used to build additional structural biomass. The differences in final plant biomass, observed between S+ and S‐ plants, are explained by the CO2 concentration in the atmosphere during the first 20 days after sowing, the oscillation in CO2 supply thereafter is playing a smaller role in this response. Switching plants from high to low CO2 and vice versa, also did not prevent down‐regulation of photosynthesis, despite lower leaf sugar concentrations than in C+ plants. Nitrate concentration decreased dramatically in C+, S+ and S‐ plants. The leaf C/N ratio was highest in C+ plants (ranging from 8 to 13), intermediate in S+ and S‐ plants (from 7 to 11) and lowest in C‐ plants (from 6 to 8). This supports the view that the balance between carbohydrates and nitrogen may have a triggering role in plant response under elevated CO2. Carbon export rates by the leaves seem to be independent of total carbon assimilation, suggesting a sink limiting effect on tobacco growth and phototsynthesis under elevated CO2.  相似文献   

17.
The whole-plant CO2 compensation point (Γplant) is the minimum atmospheric CO2 level required for sustained growth. The minimum CO2 requirement for growth is critical to understanding biosphere feedbacks on the carbon cycle during low CO2 episodes; however, actual values of Γplant remain difficult to calculate. Here, we have estimated Γplant in tobacco by measuring the relative leaf expansion rate at several low levels of atmospheric CO2, and then extrapolating the leaf growth vs. CO2 response to estimate CO2 levels where no growth occurs. Plants were grown under three temperature treatments, 19/15, 25/20 and 30/25°C day/night, and at CO2 levels of 100, 150, 190 and 270 μmol CO2 mol−1 air. Biomass declined with growth CO2 such that Γplant was estimated to be approximately 65 μmol mol−1 for plants grown at 19/15 and 30/25°C. In the first 19 days after germination, plants grown at 100 μmol mol−1 had low growth rates, such that most remained as tiny seedlings (canopy size <1 cm2). Most seedlings grown at 150 μmol mol−1 and 30/25°C also failed to grow beyond the small seedling size by day 19. Plants in all other treatments grew beyond the small seedling size within 3 weeks of planting. Given sufficient time (16 weeks after planting) plants at 100 μmol mol−1 eventually reached a robust size and produced an abundance of viable seed. Photosynthetic acclimation did not increase Rubisco content at low CO2. Instead, Rubisco levels were unchanged except at the 100 and 150 μmol mol−1 where they declined. Chlorophyll content and leaf weight per area declined in the same proportion as Rubisco, indicating that leaves became less expensive to produce. From these results, we conclude that the effects of very low CO2 are most severe during seedling establishment, in large part because CO2 deficiency slows the emergence and expansion of new leaves. Once sufficient leaf area is produced, plants enter the exponential growth phase and acquire sufficient carbon to complete their life cycle, even under warm conditions (30/25°C) and CO2 levels as low as 100 μmol mol−1.  相似文献   

18.
19.
Tosserams  Marcel  Visser  Andries  Groen  Mark  Kalis  Guido  Magendans  Erwin  Rozema  Jelte 《Plant Ecology》2001,154(1-2):195-210
Due to anthropogenic influences, both solar UV-B irradiance at the earth's surface and atmospheric [CO2] are increasing. To determine whether effects of CO2 enrichment on faba bean (cv. Minica) growth are modified by UV-B radiation, the effects of enhanced [CO2] on growth and photosynthetic characteristics, were studied at four UV-B levels. Faba bean was sensitive to enhanced UV-B radiation as indicated by decreases in total biomass production. Growth stimulation by CO2 enrichment was greatly reduced at the highest UV-B level. [CO2] by UV-B interactions on biomass accumulation were related to loss of apical dominance. Both [CO2] and UV-B radiation affected biomass partitioning, UV-B effects being most pronounced. Effects of [CO2] and UV-B on faba bean growth were time-dependent, indicating differential sensitivity of developmental stages. [CO2] and UV-B effects on photosynthetic characteristics were rather small and restricted to the third week of treatment. CO2 enrichment induced photosynthetic acclimation, while UV-B radiation decreased light-saturated photosynthetic rate. It is concluded that the reduction in biomass production cannot be explained by UV-B-induced effects on photosynthesis.  相似文献   

20.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号