共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedlings 总被引:4,自引:13,他引:4
The effects of long-term CO2 enhancement and varying nutrient availability on photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) were studied on loblolly pine (Pinus taeda L.) seedlings grown in two atmospheric CO2 partial pressures (35 and 65 Pa) and three nutrient treatments (low N, low P, and high N and P). Measurements taken in late autumn (November) after 2 years of CO2 enrichment and nutrient addition showed that photosynthetic rates were higher for plants grown at elevated CO2 only when they received supplemental N. Total rubisco activity and rubisco content decreased at elevated CO2, but there was an increase in activation state. At elevated CO2, proportionately less N was found in rubisco and more N was found in the light reaction components. These results demonstrate acclimation of photosynthetic processes to elevated CO2 through reallocation of N. Loblolly pine grown in nutrient conditions similar to native soils (low N availability) had lower needle N and chlorophyll content, lower total rubisco activity and content, and lower photosynthetic rates than plants grown at high N and P. This suggests that the magnitude of the photosynthetic response to a future, high-CO2 environment will be dependent on soil fertility in the system. 相似文献
2.
Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem 总被引:1,自引:0,他引:1
We measured the short‐term direct and long‐term indirect effects of elevated CO2 on leaf dark respiration of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in an intact forest ecosystem. Trees were exposed to ambient or ambient + 200 µmol mol?1 atmospheric CO2 using free‐air carbon dioxide enrichment (FACE) technology. After correcting for measurement artefacts, a short‐term 200 µmol mol?1 increase in CO2 reduced leaf respiration by 7–14% for sweetgum and had essentially no effect on loblolly pine. This direct suppression of respiration was independent of the CO2 concentration under which the trees were grown. Growth under elevated CO2 did not appear to have any long‐term indirect effects on leaf maintenance respiration rates or the response of respiration to changes in temperature (Q10, R0). Also, we found no relationship between mass‐based respiration rates and leaf total nitrogen concentrations. Leaf construction costs were unaffected by growth CO2 concentration, although leaf construction respiration decreased at elevated CO2 in both species for leaves at the top of the canopy. We conclude that elevated CO2 has little effect on leaf tissue respiration, and that the influence of elevated CO2 on plant respiratory carbon flux is primarily through increased biomass. 相似文献
3.
R. O. TESKEY 《Plant, cell & environment》1997,20(3):373-380
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species. 相似文献
4.
The effects of ultraviolet-B radiation on loblolly pine. I. Growth, photosynthesis and pigment production in greenhouse-grown seedlings 总被引:5,自引:0,他引:5
One-year old loblolly pine ( Pinus taeda L.) seedlings were grown in an unshaded greenhouse for 7 months under 4 levels of ultraviolet-B (UV-B) radiation simulating stratospheric ozone reductions of 16, 25 and 40% and included a control with no UV-B radiation. Periodic measurements were made of growth and gas exchange characteristics and needle chlorophyll and UV-B-absorbing-compound concentrations. The effectiveness of UV-B radiation on seedling growth and physiology varied with the UV-B irradiance level. Seedlings receiving the lowest supplemental UV-B irradiance showed reductions in growth and photosynthetic capacity after only 1 month of irradiation. These reductions persisted and resulted in lower biomass production, while no increases in UV-B-absorbing compounds in needles were observed. Seedlings receiving UV-B radiation which simulated a 25% stratospheric ozone reduction showed an increase in UV-B-absorbing-compound concentrations after 6 months, which paralleled a recovery in photosynthesis and growth after an initial decrease in these characteristics. The seedlings grown at the highest UV-B irradiance (40% stratospheric ozone reduction) showed a more rapid increase in the concentration of UV-B-absorbing compounds and no effects of UV-B radiation on growth or photosynthetic capacity until after 4 months at this irradiance. Changes in photosynthetic capacity were probably the result of direct effects on light-dependent processes, since no effects were observed on either needle chlorophyll concentrations or stomatal conductance. Further studies are necessary to determine whether these responses persist and accumulate over subsequent years. 相似文献
5.
Seasonal response of photosynthesis to elevated CO2 in loblolly pine (Pinus taeda L.) over two growing seasons 总被引:1,自引:0,他引:1
Trees growing in natural systems undergo seasonal changes in environmental factors that generate seasonal differences in net photosynthetic rates. To examine how seasonal changes in the environment affect the response of net photosynthetic rates to elevated CO2, we grew Pinus taeda L. seedlings for three growing seasons in open-top chambers continuously maintained at either ambient or ambient + 30 Pa CO2. Seedlings were grown in the ground, under natural conditions of light, temperature nd nutrient and water availability. Photosynthetic capacity was measured bimonthly using net photosynthetic rate vs. intercellular CO2 partial pressure (A-Ci) curves. Maximum Rubisco activity (Vcmax) and ribulose 1,5-bisphosphate regeneration capacity mediated by electron transport (Jmax) and phosphate regeneration (PiRC) were calculated from A-Ci curves using a biochemically based model. Rubisco activity, activation state and content, and leaf carbohydrate, chlorophyll and nitrogen concentrations were measured concurrently with photosynthesis measurements. This paper presents results from the second and third years of treatment. Mean leaf nitrogen concentrations ranged from 13.7 to 23.8 mg g?1, indicating that seedlings were not nitrogen deficient. Relative to ambient CO2 seedlings, elevated CO2 increased light-saturated net photosynthetic rates 60–110% during the summer, but < 30% during the winter. A relatively strong correlation between leaf temperature and the relative response of net photosynthetic rates to elevated CO2 suggests a strong effect of leaf temperature. During the third growing season, elevated CO2 reduced Rubisco activity 30% relative to ambient CO2 seedlings, nearly completely balancing Rubisco and RuBP-regeneration regulation of photosynthesis. However, reductions in Rubisco activity did not eliminate the seasonal pattern in the relative response of net photosynthetic rates to elevated CO2. These results indicate that seasonal differences in the relative response of net photosynthetic rates to elevated CO2 are likely to occur in natural systems. 相似文献
6.
A field study of the effects of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees 总被引:1,自引:3,他引:1
R. O. TESKEY 《Plant, cell & environment》1995,18(5):565-573
A study was conducted in 21-year-old loblolly pine (Pinus taeda L.) trees growing in plantation in north central Georgia, USA. The experiment used branch chambers to impose treatments of ambient, ambient +165 and ambient + 330 μmol mol?1 CO2. After one growing season there was no indication of acclimation to elevated CO2. In August and September, carbon assimilation, measured by two different methods, was twice as high at ambient +330 μmol mol?1 CO2 than at ambient. Dark respiration was suppressed by 6% at ambient +165 and by 14% at ambient + 330 μmol mol?1 CO2. This suppression was immediate, and not an effect of exposure to elevated CO2 during growth, since respiration was reduced by the same amount in all treatments when measured at a high CO2 concentration. Elevated CO2 increased the growth of foliage and woody tissue. It also increased instantaneous transpiration efficiency, but it had no effect on stomatal conductance. Since the soil at the study site had low to moderate fertility, these results suggest that the growth potential of forests on many sites may be enhanced by global increases in atmospheric CO2, concentration. 相似文献
7.
8.
F. W. TELEWSKI R. T. SWANSON B. R. STRAIN & J. M. BURNS 《Plant, cell & environment》1999,22(2):213-219
Loblolly pine (Pinus taeda L.) were grown in the field, under non-limiting nutrient conditions, in open-top chambers for 4 years at ambient CO2 partial pressures (pCO2) and with a CO2-enriched atmosphere (+ 30 Pa pCO2 compared to ambient concentration). A third replicate of trees were grown without chambers at ambient pCO2. Wood anatomy, wood density and tree ring width were analysed using stem wood samples. No significant differences were observed in the cell wall to cell lumen ratio within the latewood of the third growth ring formed in 1994. No significant differences were observed in the density of resin canals or in the ratio of resin canal cross-sectional area to xylem area within the same growth ring. Ring widths were significantly wider in the CO2-enrichment treatment for 3 of 4 years compared to the ambient chamber control treatment. Latewood in the 1995 growth ring was significantly wider than that in the ambient control and represented a larger percentage of the total growth-ring width. Carbon dioxide enrichment also significantly increased the total wood specific gravity (determined by displacement). However, when determined as total sample wood density by X-ray densitometry, the density of enriched samples was not significantly higher than that of the ambient chamber controls. Only the 1993 growth ring of enriched trees had a significantly higher maximum latewood density than that of trees grown on non-chambered plots or ambient chambered controls. No significant differences were observed in the minimum earlywood density of individual growth rings between chambered treatments. These results show that the most significant effect of CO2 enrichment on wood production in loblolly pine is its influence on radial growth, measured as annual tree ring widths. This influence is most pronounced in the first year of growth and decreases with age. 相似文献
9.
The influence of elevated CO2 and O3 on fine roots and mycorrhizas of naturally growing young Scots pine trees during three exposure years 总被引:2,自引:0,他引:2
Young Scots pine trees naturally established at a pine heath were exposed to two concentrations of CO2 (ambient and doubled ambient) and two O3 regimes (ambient and doubled ambient) and their combination in open-top field chambers during growing seasons 1994, 1995 and 1996 (late May to 15 September). Filtered ozone treatment and chamberless control trees were also included in the treatment comparisons. Root ingrowth cores were inserted to the undisturbed soil below the branch projection of each tree at the beginning of the fumigation period in 1994 and were harvested at the end of the fumigation periods in 1995 and 1996. Root biomasses were determined from different soil layers in the ingrowth cores, and the infection levels of different mycorrhizal types were calculated. Elevated O3 and CO2 did not have significant effects on the biomass production of Scots pine coarse (Ø > 2 mm) or fine roots (Ø < 2 mm) and roots of grasses and dwarf shrubs. Elevated O3 caused a transient stimulation, observable in 1995, in the proportion of tuber-like mycorrhizas, total mycorrhizas and total short roots but this stimulation disappeared during the last study year. Elevated CO2 did not enhance carbon allocation to root growth or mycorrhiza formation, although a diminishing trend in the mycorrhiza formation was observed. In the combination treatment increased CO2 inhibited the transient stimulating effect of ozone, and a significant increase of old mycorrhizas was observed. Our conclusion is that doubled CO2 is not able to increase carbon allocation to growth of fine roots or mycorrhizas in nutrient poor forest sites and realistically elevated ozone does not cause a measurable limitation to roots within a period of three exposure years. 相似文献
10.
11.
12.
The effects of ultraviolet-B radiation on loblolly pine 总被引:11,自引:0,他引:11
Summary Depletion of stratospheric ozone and the resulting increase in ultraviolet-B (UV-B) radiation may negatively impact the productivity of terrestrial ecosystems. This concern has led to a number of studies that report the influence of supplementing UV-B radiation on plant growth and development. However, only two of these field studies have included tree species and both were singleseason experiments. In this study, loblolly pine (Pinus taeda L.) from seven seed sources was grown under natural and supplemental levels of UV-B radiation. Irradiation treatments were continued for three seasons on plants from four of the seven groups and for 1 year only for three groups. The supplemental irradiances simulated those that would be anticipated with stratospheric ozone reductions of 16% and 25% over Beltsville, Md. The effects of UV-B radiation during the 1st year on plant growth varied among the seed sources. The growth of plants from two of the seven seed sources tested showed significant reductions following a single irradiation season and plants from one group tended to be larger under increased UV-B radiation. However, after 3 years of supplemental irradiation, plant biomass was reduced in all four groups by 12–20% at the highest simulated ozone depletion. These results suggest that the effects of UV-B radiation may accumulate in trees and that increased UV-B radiation could significantly reduce the growth of loblolly pine over its lifetime. However, they also point to a need for multiple season research in any analysis of potential consequences of global change on the long-term growth of trees. 相似文献
13.
Net CO2 exchange rates (CERs) were measured in seedlings of two loblotly pine ( Pinus taeda L.) families following 6- or 13-week exposures to ozone (charcoalfiltered or ambient air + O3 ) and acid rain treatments (pH 3.3, 4.5 and 5.2). Ozone exposures (14 or 170 nl l−1 ) were made in open-top chambers, and in continously stirred tank reactors (14, 160 or 320 nl l−1 ) located in the field and laboratory, respectively. The CERs of whole shoots were measured in an open infrared gas analysis system at 6 levels of photosynthetic photon flux density (0, 33, 60, 410, 800 and 1660 μmol m−2 s−1 ). Treatment effects were not consistent between field- and laboratory-exposed seedlings. Ozone-treated field seedlings exhibited statistically significant reductions in light-saturated CER of 12.5 and 25% when measured at 6 and 13 weeks, respectively. Laboratory seedlings exhibited mixed responses to O3 , with one family showing reduced CER only after 6 weeks of O3 exposure and the other only after 13 weeks (O3 >160 nl l−1 for both). After 13 weeks of exposure, pH 3.3, and 4.5 rain treatments enhanced light-saturated CER by an average of 52% over that observed in seedlings exposed to the pH 5.2 treatment. Enhanced CERs due to acid rain were of the same magnitude (3–5 μmol CO2 g−1 s−1 ) as ozone-induced CER reductions. No differences in dark respiration were detected between treatments. Although ozone and acid rain treatments altered seedling CER, the differences were not translated into altered final plant dry weights over the 13-week exposure period. 相似文献
14.
The ambient pollution climate at the Liphook forest fumigation site, where coniferous trees were fumigated with SO2 and O3, for 4 years under field conditions, was characteristic of the fringes of the areas where pollutant effects are a problem. Experimental treatments increased SO2 concentrations to levels more characteristic of Eastern Europe, and summer O3 concentrations by 30%. Deposition of SO2 to the soil between the trees (inferred from shallow lysimeters) was significant, the deposition velocity being 2–1 mms?1. Deposition to Scots pine and Sitka spruce canopies was greater, deposition velocities being 8.5 and 9.4 mm s?1, respectively. These high values may perhaps be explained by co-deposition with NH3. Calculations assume that dry deposition was the sole source of SO42? gain in throughfall, and that there was no significant retention by the trees. There was a trend for O3 to enhance SO2 deposition to both soil and trees. Fumigation with SO2 led to a significant increase in leaching of cations from foliage. Each species neutralized about 63% of the dry-deposited SO2, predominantly by ion exchange for Ca and K. Equations are provided which allow calculation of foliar leaching given SO2 concentrations or SO42? deposition. Fumigation increased the rate of nutrient cycling considerably, without affecting foliar concentrations or damaging the trees. Ozone treatments did not enhance foliar leaching, calling into question some suggested mechanisms for the causes of forest decline. 相似文献
15.
16.
Martin Strand 《Physiologia plantarum》1995,95(4):581-590
In an open-field experiment, 50-year-old trees of Scots pine (Pinus sylvestris L.) were fumigated with low concentrations of SO2 and NO2 (10–15 nl I?1) during the growing season in four consecutive years (1988 to 1991). Results from the autumn and early winter of 1991 and 1992 are presented. The maximum photochemical efficiency of photosystem II (PSII), as indicated by the ratio of variable to maximum fluorescence (Fv/FM) was assessed in current and one-year-old needles from the top and the bottom of the canopy. Furthermore, simultaneous measurements of photosynthetic O2 evolution and chlorophyll fluorescence were made in current-year needles at 20°C. In general, the Fv/FM ratio as well as the gross rate of O2 evolution in needles of fumigated trees was not significantly different from that in needles of control trees during the fumigation period. However, both current and one-year-old needles sampled in November and December 1991 from the top of the canopy of fumigated trees had significantly lower Fv/FM values than corresponding needles of control trees. Similar differences in Fv/FM correlated with the treatments were observed in needles from the bottom of the canopy, indicating that the depression of Fv/FM in needles of fumigated trees was not due to an increased susceptibility to photoinhibition. In 1992, when no fumigation occurred, differences in Fv/FM between the treatments were not significant during autumn and early winter. The gross rate of O2 evolution at high irradiances was significantly lower in current-year needles of fumigated trees sampled in November and December 1991 than in those of control trees. Furthermore, a nearly identical linear relationship between the quantum yield of PSII electron transport determined from chlorophyll fluorescence and the quantum yield of O2 evolution (gross rate of O2 evolution/PPFD) was found during autumn and early winter. This appeared to be largely a result of changes in the thermal energy dissipation within PSII. The observed differences in photosynthetic characteristics correlated with the different treatments after the fumigation period is suggested to be mainly caused by increased sensitivity of the needles of fumigated trees to low and subfreezing temperatures. However, current-year needles of fumigated trees tended to have a lower N content than those of control trees, which may partly explain the differences in gross photosynthesis between fumigated and control trees. 相似文献
17.
Interactions of tropospheric CO2 and O3 enrichments and moisture variations on microbial biomass and respiration in soil 总被引:1,自引:0,他引:1
Soil microbial biomass C (Cmic) is a sensitive indicator of trends in organic matter dynamics in terrestrial ecosystems. This study was conducted to determine the effects of tropospheric CO2 or O3 enrichments and moisture variations on total soil organic C (Corg), mineralizable C fraction (CMin), Cmic, maintenance respiratory (qCO2) or Cmic death (qD) quotients, and their relationship with basal respiration (BR) rates and field respiration (FR) fluxes in wheat‐soybean agroecosystems. Wheat (Triticum aestivum L.) and soybean (Glycine max. L. Merr) plants were grown to maturity in 3‐m dia open‐top field chambers and exposed to charcoal‐filtered (CF) air at 350 μL CO2 L?1; CF air + 150 μL CO2 L?1; nonfiltered (NF) air + 35 nL O3 L?1; and NF air + 35 nL O3 L?1 + 150 μL CO2 L?1 at optimum (? 0.05 MPa) and restricted soil moisture (? 1.0 ± 0.05 MPa) regimes. The + 150 μL CO2 L?1 additions were 18 h d?1 and the + 35 nL O3 L?1 treatments were 7 h d?1 from April until late October. While Corg did not vary consistently, CMin, Cmic and Cmic fractions increased in soils under tropospheric CO2 enrichment (500 μL CO2 L?1) and decreased under high O3 exposures (55 ± 6 nL O3 L?1 for wheat; 60 ± 5 nL O3 L?1 for soybean) compared to the CF treatments (25 ± 5 nL O3 L?1). The qCO2 or qD quotients of Cmic were also significantly decreased in soils under high CO2 but increased under high O3 exposures compared to the CF control. The BR rates did not vary consistently but they were higher in well‐watered soils. The FR fluxes were lower under high O3 exposures compared to soils under the CF control. An increase in Cmic or Cmic fractions and decrease in qCO2 or qD observed under high CO2 treatment suggest that these soils were acting as C sinks whereas, reductions in Cmic or Cmic fractions and increase in qCO2 or qD in soils under elevated tropospheric O3 exposures suggest the soils were serving as a source of CO2. 相似文献
18.
H. BASSIRIRAD R. B. THOMAS J. F. REYNOLDS B. R. STRAIN 《Plant, cell & environment》1996,19(3):367-371
The nitrogen requirement of plants is predominantly supplied by NH4+ and/or NO3? from the soil solution, but the energetic cost of uptake and assimilation is generally higher for NO3? than for NH4+. We found that CO2 enrichment of the atmosphere enhanced the root uptake capacity for NO3?, but not for NH4+, in field-grown loblolly pine saplings. Increased preference for NO3? at the elevated CO2 concentration was accompanied by increased carbohydrate levels in roots. The results have important implications for the potential consequences of global climate change on plant-and ecosystem-level processes in many temperate forest ecosystems. 相似文献
19.
Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine 总被引:1,自引:0,他引:1
Naturally regenerated Scots pines (Pinus sylvestris L.), aged 28–30 years old, were grown in open-top chambers and subjected in situ to three ozone (O3) regimes, two concentrations of CO2, and a combination of O3 and CO2 treatments From 15 April to 15 September for two growing seasons (1994 and 1995). The gas exchanges of current-year and 1-year-old shoots were measured, along with the nitrogen content of needles. In order to investigate the factors underlying modifications in photosynthesis, five parameters linked to photosynthetic performance and three to stomatal conductance were determined. Elevated O3 concentrations led to a significant decline in the CO2 compensation point (Г*), maximum RuP2-saturated rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), maximum stomatal conductance (gsmax), and sensitivity of stomatal conductance to changes in leaf-to-air vapour pressure difference (?gs/?Dv) in both shoot-age classes. However, the effect of elevated O3 concentrations on the respiration rate in light (Rd) was dependent on shoot age. Elevated CO2(700 μmol mol?1) significantly decreased Jmax and gsmax but increased Rd in 1-year-old shoots and the ?gs/?Dv in both shoot-age classes. The interactive effects of O3 and CO2 on some key parameters (e.g. Vcmax and Jmax) were significant. This may be closely related to regulation of the maximum stomatal conductance and stomatal sensitivity induced by elevated CO2. As a consequence, the injury induced by O3 was reduced through decreased ozone uptake in 1-year-old shoots, but not in the current-year shoots. Compared to ambient O3 concentration, reduced O3 concentrations (charcoal-filtered air) did not lead to significant changes in any of the measured parameters. Compared to the control treatment, calculations showed that elevated O3 concentrations decreased the apparent quantum yield by 15% and by 18%, and the maximum rate of photosynthesis by 21% and by 29% in the current-year and 1-year-old shoots, respectively. Changes in the nitrogen content of needles resulting from the various treatments were associated with modifications in photosynthetic components. 相似文献
20.
Elevated concentrations of atmospheric
CO2 protect against and compensate for
O3 damage to photosynthetic tissues of
field-grown wheat 总被引:2,自引:0,他引:2
I. F. McKEE B. J. MULHOLLAND J. CRAIGON C. R. BLACK & S. P. LONG 《The New phytologist》2000,146(3):427-435
The effects of elevated concentrations of atmospheric carbon dioxide and ozone on diurnal patterns of photosynthesis have been investigated in field-grown spring wheat ( Triticum aestivum ). Plants cultivated under realistic agronomic conditions, in open-top chambers, were exposed from emergence to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2 ] at ambient (380 μmol mol−1 , seasonal mean) or elevated (692 μmol mol−1 ) levels, [O3 ] at ambient (27 nmol mol−1 , 7 hr seasonal mean) or elevated (61 nmol mol−1 ) levels. After anthesis, diurnal measurements were made of flag-leaf gas-exchange and in vitro Rubisco activity and content. Elevated [CO2 ] resulted in an increase in photoassimilation rate and a loss of excess Rubisco activity. Elevated [O3 ] caused a loss of Rubisco and a decline in photoassimilation rate late in flag-leaf development. Elevated [CO2 ] ameliorated O3 damage. The mechanisms of amelioration included a protective stomatal restriction of O3 flux to the mesophyll, and a compensatory effect of increased substrate on photoassimilation and photosynthetic control. However, the degree of protection and compensation appeared to be affected by the natural seasonal and diurnal variations in light, temperature and water status. 相似文献