首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many cells develop enhanced adenylate cyclase activity after prolonged exposure to drugs that acutely inhibit the enzyme and it has been suggested that this adaptation may be due to an increase in Gs alpha. We have treated wild-type and Gs alpha-deficient cyc- S49 mouse lymphoma cells with a stable analogue (SMS 201-995) of the inhibitory agonist somatostatin. After incubation with SMS for 24 h, the forskolin-stimulated cAMP synthetic rate in intact cyc- cells was increased by 76%, similar to the increase found in the wild-type cells. Forskolin-stimulated adenylate cyclase activity in the presence of Mn2+ was also increased in membranes prepared from SMS-treated cyc- cells; however, guanine nucleotide-mediated inhibition of adenylate cyclase activity was not changed despite a small decrease in inhibitory Gi alpha subunits detected by immunoblotting. Pretreatment of cyc- cells with pertussis toxin prevented SMS from inducing the enhancement of forskolin-stimulated cAMP accumulation in intact cells. After chronic incubation of cyc- cells with SMS, exposure to N-ethylmaleimide, which abolished receptor-mediated inhibition of cAMP accumulation, did not attenuate the enhanced rate of forskolin-stimulated cAMP synthesis compared to N-ethylmaleimide-treated controls. These results with cyc- cells demonstrate that an adaptive increase in adenylate cyclase activity induced by chronic treatment with an inhibitory drug can occur in the absence of expression of Gs alpha.  相似文献   

3.
The insect prothoracic gland produces ecdysteroids that elicit molting and metamorphosis, and neurohormone stimulation of steroidogenesis by this gland involves both Ca2+ and cyclic adenosine monophosphate second messengers. Prothoracic gland adenylate cyclase exhibits a complex Ca2+/calmodulin (CaM) dependence, a component of which requires an activated Gs alpha for expression. A developmental switch in this system has been identified that correlates with a change in both regulation and function of the gland and involves the loss of sensitivity to extracellular Ca2+ at a time approximately concurrent with the loss of Ca2+/CaM sensitivity by the adenylate cyclase. The extent of cholera toxin activation of gland Gs alpha is lowered before this developmental switch. However, no alterations in Gs alpha levels or mobility are detected, suggesting that Gs alpha interaction with another component in the signaling pathway, perhaps adenylate cyclase itself, produces the apparent Ca2+/CaM dependence and influences the ability of toxin to modify Gs alpha.  相似文献   

4.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

5.
6.
In an earlier study we demonstrated that epidermal growth factor (EGF) increases the cellular accumulation of cAMP in perfused rat hearts by stimulating the cardiac adenylate cyclase via a stimulatory GTP-binding protein (Nair, B. G., Rashed, H. M., and Patel, T. B. (1989) Biochem. J. 264, 563-571). Employing antiserum, CS1, generated against a synthetic decapeptide RMHLRQYELL representing the carboxyl terminus of Gs alpha, the involvement of Gs in mediating the effects of EGF on cardiac adenylate cyclase was further investigated. The CS1 antiserum specifically recognized two forms, (52 and 40 kDa) of Gs alpha in rat cardiac membranes; the 52 kDa being the predominant species. In functional assays of adenylate cyclase activity, the CS1 antiserum did not alter either aluminum fluoride- or forskolin-stimulated adenylate cyclase activity. Similarly, basal adenylate cyclase activity in the absence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) was also not altered by the CS1 antiserum. However, as compared with controls performed in the presence of non-immune serum, preincubation of cardiac membranes with the CS1 antiserum resulted in a concentration-dependent inhibition of Gpp(NH)p-, isoproterenol-, and EGF-stimulated activities. In experiments which monitored Gi function as the ability of different G(pp)NHp, (-)N6-(R-phenylisopropyl)adenosine and carbachol to inhibit forskolin-stimulated adenylate cyclase, CS1 antiserum by inhibiting Gs, increased the apparent activity of Gi. Overall, our data demonstrate that the CS1 antiserum can specifically inhibit Gs function and therefore the stimulation of adenylate cyclase by agonists whose actions are mediated by Gs. In this respect, the data presented here demonstrate that Gs is the G-protein involved in mediating EGF-elicited stimulation of cardiac adenylate cyclase. Additionally, the finding that CS1 antiserum can overcome the effects of Gpp(NH)p on Gs, but not Gi, suggests that the carboxyl-terminal region of Gs alpha is important in the interactions with GTP or its analogs.  相似文献   

7.
Thyroid hormones regulate G-protein beta-subunit mRNA expression in vivo   总被引:2,自引:0,他引:2  
Thyroid hormones exert "permissive effects" on the hormone-sensitive adenylate cyclase. Regulation of the expression of Gi (Gi alpha 2) and Gs by thyroid hormones in vivo was investigated at the level of mRNA. Steady-state levels of the mRNA for Gi alpha 2 and Gs alpha, as well as the G beta-subunits, were quantified using DNA excess solution hybridization analysis. Regulation of protein and mRNA expression in adipose tissue was investigated in hypothyroid, euthyroid, and hyperthyroid rats. In euthyroid animals, steady-state levels of mRNA (amol/microgram RNA) were 13.8, 5.9, and 5.7 for Gs alpha, Gi alpha 2, and G beta 1,2, respectively. Activation of adenylate cyclase by Gs is unaffected by thyroid status. Both Gs alpha and Gs alpha mRNA levels in hypothyroid rats were the same as those of controls (euthyroid). The inhibitory control of adenylate cyclase, in contrast, is markedly potentiated in hypothyroid rats. The expression of G1 alpha s and G beta-subunits was increased in hypothyroidism. Whereas Gi alpha 2 mRNA levels remained essentially unchanged, G beta 1,2 mRNA levels were observed to increase 45% in the hypothyroid state. In the hyperthyroid state G beta 1,2 mRNA levels were observed to decline by 35%. Regulation of G-protein subunit expression, at the level of mRNA, appears to be one component of permissive hormone action on transmembrane signalling.  相似文献   

8.
The effects of pertussis toxin on the steady-state levels of G-protein alpha- and beta-subunits were investigated both in vitro and in vivo. The steady-state level Go alpha, a major substrate for pertussis toxin-catalyzed ADP-ribosylation, was unaltered by pertussis toxin treatment for periods up to 100 h for 3T3-L1 cells in culture or up to 3 days in vivo. In 3T3-L1 cells pertussis toxin treatment did not alter levels of Gs alpha-subunits; in S49 cells the level of Gs alpha-subunits declined moderately following by pertussis toxin treatment. The steady-state levels of G beta-subunits, in contrast, were found to decline to less than 50% of the normal cellular complement following pertussis toxin treatment in vitro and in vivo. Inhibitory control of adenylate cyclase, pertussis toxin-catalyzed ADP-ribosylation of Gi alpha and Go alpha, and the GTP-dependent shift in agonist-specific binding to beta-adrenergic receptors were attenuated or abolished within 5 h of pertussis toxin treatment, representing "early" effects of the toxin. Stimulatory regulation of adenylate cyclase, in contrast, displayed a progressive enhancement that was first observed 4 h after pertussis toxin treatment, increasing thereafter up until 100 h, the last time point measured. This progressive enhancement of the stimulatory pathway of adenylate cyclase was not manifest at the level of stimulatory receptors, since the Kd and Bmax for one such receptor, the beta-adrenergic receptor, were shown to be unaltered in toxin-treated cells. Furthermore, the potentiation of stimulation of adenylate cyclase was observed in cells stimulated by the beta-adrenergic agonist isoproterenol and PGE1 alike. The progressive enhancement of the stimulatory pathway correlated best with the decline in G beta-subunit levels that occurs following pertussis intoxication. The changes in both of these parameters occur "late" (12-48 h), as compared to the early events that occur within 5 h. Pertussis toxin action appears to be composed of two, temporally distinct, groups of effects. Pertussis toxin-catalyzed ADP-ribosylation of G alpha-subunits, attenuation of the inhibitory regulation of adenylate cyclase, and attenuation of the ability of GTP to induce an agonist-specific shift in receptor affinity are members of the early group of effects. The second group of late effects includes the decline in G beta-subunit levels and the progressive enhancement of the stimulatory pathway of adenylate cyclase. This enhanced stimulatory control at these later times cannot be explained by the attenuation of the inhibitory pathway occurring early, but rather appears as G beta-subunit levels decline.  相似文献   

9.
Physiological stress induces tyrosine hydroxylase, the rate-limiting enzyme for catecholamine biosynthesis, via trans-synaptic mechanisms within the adrenal medulla. Previous studies have implicated cAMP as a second messenger capable of inducing tyrosine hydroxylase; however, it is unclear whether any receptor coupled to adenylate cyclase mediates tyrosine hydroxylase induction. Recently, vasoactive intestinal polypeptide, whose receptor is coupled to adenylate cyclase in many tissues, has been shown to meet many of the criteria for a neuromodulator within the adrenal medulla. We therefore undertook a series of studies to determine whether vasoactive intestinal polypeptide may induce tyrosine hydroxylase in PC12 cells, a cell line derived from rat adrenal medulla. Here we report that vasoactive intestinal polypeptide produces a transient, time- and concentration-dependent increase in tyrosine hydroxylase mRNA levels which is followed by a stable increase in tyrosine hydroxylase protein. The increase in tyrosine hydroxylase mRNA does not occur in a mutant PC12 cell line deficient in cAMP-dependent protein kinase activity, indicating that the effect of vasoactive intestinal polypeptide is mediated through the cAMP second messenger pathway. This is the first report demonstrating that a neuromodulator which acts on an adenylate cyclase-coupled receptor can induce tyrosine hydroxylase.  相似文献   

10.
Yamada T  Naruse K  Sokabe M 《Life sciences》2000,67(21):2605-2613
When exposed to a uni-axial cyclic stretch, cultured human umbilical vein endothelial cells (HUVECs) align and elongate perpendicular to the stretch axis. Previous studies showed that forskolin inhibited stretch-induced orientation of endothelial cells, suggesting that adenosine 3:5-cyclic monophosphate (cAMP) plays an important role in the shape change. However, we have recently shown that stretch-induced shape changes in cultured HUVECs are due to increased [Ca2+]i. In the present study, we examined the possible role of cAMP in stretch-induced shape changes in cultured HUVECs. Application of uni-axial cyclic stretch induced a gradual rise in cAMP reaching a peak level at 60 min after the onset of stretch. The adenylate cyclase activator, forskolin, increased the basal level of cAMP but inhibited the rise in [Ca2+]i resulting in no cell shape changes. In contrast, N 6,2-dibutyryladenosine 3:5-cyclic monophosphate (dbcAMP) enhanced the stretch-induced increase in cAMP and [Ca2+]i and resulted in cell shape changes. On the other hand, 2'5'-dideoxyadenosine (DDA), an adenylate cyclase inhibitor, inhibited stretch-induced increases in cAMP and [Ca2+]i resulting in no cell shape changes. In summary, our data showed that cell shape changes were consistently dependent on [Ca2+]i rather than cAMP levels. We conclude that the primary second messenger in the stretch-induced shape changes in HUVECs is intracellular Ca2+ rather than cAMP.  相似文献   

11.
S49 mouse lymphoma cells respond to swelling deformation with rapid increases in intracellular calcium and cAMP. Experiments demonstrate that these increases in calcium and cAMP concentrations are not coupled in a regulatory manner. Direct inhibition of adenylate cyclase in wild type cells with miconazole prevented swelling-induced accumulation of cAMP. No effect of swelling was observed on the activity of cAMP phosphodiesterase. Additionally, complete inhibition of cAMP phosphodiesterase did not prevent swelling-induced cAMP accumulation. Experiments involving cyc- mutants (lacking the Gs-alpha protein) and 2',5'-dideoxyadenosine indicate that increased adenylate cyclase activity with swelling is not mediated by Gs. No evidence was found for attenuation of Gi-mediated inhibition of adenylate cyclase activity following swelling. In addition, exposure to pertussis toxin or phorbol ester, which disrupts Gi inhibition of adenylate cyclase did not prevent cAMP accumulation following swelling. Disruption of the actin membrane skeleton resulted in a significant accumulation of cAMP which was not further increased by swelling. Disruption of the microtubular cytoskeleton also increased cAMP content in S49 cells which could be further increased by swelling. It is concluded that S49 cell-adenylate cyclase responds directly to mechanical forces transmitted through the actin membrane skeleton.  相似文献   

12.
Recent studies have demonstrated that chronic stress increases the firing rate and expression of tyrosine hydroxylase (TH) in neurons of the locus coeruleus (LC), the major noradrenergic nucleus in brain. The present study was undertaken to examine the influence of chronic stress and other treatments known to influence the activity of LC neurons on the cyclic AMP (cAMP) second messenger system in these neurons. Chronic (5 days) cold exposure significantly increased levels of TH immunoreactivity in the LC, as previously reported, but not in substantia nigra (SN) or ventral tegmentum (VT), two dopaminergic nuclei studied for comparison. Chronic cold exposure increased levels of cAMP-dependent protein kinase activity in soluble, but not particulate, fractions of the LC, and increased basal and GTP- and forskolin-stimulated adenylate cyclase activity in this brain region. In contrast, levels of the protein kinase and adenylate cyclase in VT, SN, and frontal cortex were not significantly influenced by cold exposure. To study further the relationship between regulation of LC firing rate, TH expression, and the cAMP system in the LC, other treatments known to influence TH were examined. Reserpine treatment, shown previously to increase levels of TH, was found to increase both LC firing rate and levels of soluble cAMP-dependent protein kinase activity in the LC. 6-Hydroxydopamine, shown previously to increase levels of TH and firing rate of LC neurons, also increased soluble levels of protein kinase activity. Other treatments known to either increase (adrenalectomy) or decrease (chronic imipramine) levels of TH in the LC were also found to increase or decrease, respectively, levels of cAMP-dependent protein kinase activity in this brain region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

14.
Thyrotropin (TSH) is an important regulator of thyroid follicular cells. While its role in the maintenance of differentiated functions is undisputed, its role as a mitogen is less clear. TSH induces DNA synthesis and cell proliferation in some cells, while in others, TSH is mitogenic only in the presence of additional growth factors such as insulin-like growth factor-1. TSH causes elevations in intracellular cAMP and is thought to utilize this second messenger system in its mitogenic action. We studied TSH as a mitogen in Wistar rat thyroid cells (WRT) (Brandi, M. L., Rotella, C. M., Mavilia, C., Franceschelli, F., Tanini, A., and Toccafondi, R. (1987) Mol. Cell. Endocrinol. 54, 91-103) and examined the role of the guanine nucleotide binding protein, Gs, in its mitogenic action. WRT cells synthesized DNA in response to TSH and elevations in cAMP. In addition, TSH caused a rapid stimulation of an indicator gene whose expression is regulated by cAMP response elements. Following microinjection of an inhibitory polyclonal antibody raised against the Gs protein, both TSH-induced changes in gene expression and DNA synthesis were significantly reduced. These results demonstrate that virtually all of the mitogenic action of TSH is transduced through the Gs protein in WRT cells, presumably through the regulation of adenylate cyclase. Whether all or only part of TSH action is mediated by cAMP and the cAMP-dependent protein kinase remains to be determined.  相似文献   

15.
Platelet-activating factor (PAF), a phospholipid second messenger, has diverse physiological functions, including responses in differentiated endothelial cells to external stimuli. We used human umbilical vein endothelial cells (HUVECs) as a model system. We show that PAF activated pertussis toxin-insensitive G alpha(q) protein upon binding to its seven transmembrane receptor. Elevated cAMP levels were observed via activation of adenylate cyclase, which activated protein kinase A (PKA) and was attenuated by a PAF receptor antagonist, blocking downstream activity. Phosphorylation of Src by PAF required G alpha(q) protein and adenylate cyclase activation; there was an absolute requirement of PKA for PAF-induced Src phosphorylation. Immediate (1 min) PAF-induced STAT-3 phosphorylation required the activation of G alpha(q) protein, adenylate cyclase, and PKA, and was independent of these intermediates at delayed (30 min) and prolonged (60 min) PAF exposure. PAF activated PLC beta 3 through its G alpha(q) protein-coupled receptor, whereas activation of phospholipase C gamma 1 (PLC gamma 1) by PAF was independent of G proteins but required the involvement of Src at prolonged PAF exposure (60 min). We demonstrate for the first time in vascular endothelial cells: (i) the involvement of signaling intermediates in the PAF-PAF receptor system in the induction of TIMP2 and MT1-MMP expression, resulting in the coordinated proteolytic activation of MMP2, and (ii) a receptor-mediated signal transduction cascade for the tyrosine phosphorylation of FAK by PAF. PAF exposure induced binding of p130(Cas), Src, SHC, and paxillin to FAK. Clearly, PAF-mediated signaling in differentiated endothelial cells is critical to endothelial cell functions, including cell migration and proteolytic activation of MMP2.  相似文献   

16.
We report that compartmentalisation of the stimulatory guanine-nucleotide-binding regulatory protein (Gs) exists in S49 lymphoma cells. In addition to the previously reported cytosolic form of the alpha subunit of Gs (Gs alpha) [Ransn?s, L. A., Svoboda P., Jasper, J. R. & Insel, P. A. (1989) Proc. Natl Acad. Sci. USA 86, 7900-7903], three membrane-bound forms of Gs alpha were identified through rate-zonal centrifugation in sucrose density gradients, Gs alpha-specific anti-peptide serum and an adenylate cyclase complementation assay. The sedimentation profile of the first pool of Gs alpha in the high-density portion of the gradient (1.13-1.16 g/cm3) is identical with that of beta-adrenergic-receptor binding, Na/K-ATPase and adenylate cyclase activity, and may therefore be identified as plasma-membrane fragments. The second pool, which was recovered in the middle portion of the gradient (1.09-1.11 g/cm3), contains a much lower total amount of Gs alpha and correlates with the endoplasmic reticulum (microsomal) enzyme markers, NADPH-cytochrome-c reductase and glucose-6-phosphatase. The identity of the third pool of Gs alpha located at the top of the gradient (1.06-1.08 g/cm3), is unknown. The Golgi apparatus marker, UDPgalactose:N-acetylglucosamine glycosyltransferase, was partially recovered in this area; however, this enzyme was also present in the high-density portion of the gradient. Complete absence of specific adenylate cyclase and Na/K-ATPase activity indicates that this low-density (light) membrane form of Gs alpha is distinct from any plasma-membrane fragments. Furthermore, sedimentation at 100,000 x g proves its particulate (membrane) character. The light membrane form of Gs alpha subunit is functionally active in an adenylate cyclase complementation assay using cyc- membranes devoid of Gs alpha. Overall, our data indicates that a substantial portion of Gs alpha is localized in membrane pools other than plasma membrane.  相似文献   

17.
Forskolin, a stimulator of adenylate cyclase, induced a dose-dependent and reversible dispersion of pigment within fish leucophores. Li+, known as an inhibitor of the enzyme, depressed pigment-dispersion response of leucophores to either forskolin or isoproterenol, inducing an aggregation of pigment within the cells. These results indicate that Li+ acted on the cells through inhibition of forskolin- or isoproterenol-stimulated adenylate cyclase activity. The results suggest that adenylate cyclase is involved in the pigment-dispersion response of leucophores and that cAMP acts as a second messenger in the response.  相似文献   

18.
An antibody (RM) raised against the carboxyl-terminal decapeptide of the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Gs alpha) has been used to study the interaction of Gs alpha with bovine brain adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1]. RM antibody immunoprecipitated about 60% of the solubilized adenylate cyclase preactivated with either GTP-gamma-S or AlF4-. In contrast, RM antibody immunoprecipitated about 5% of the adenylate cyclase not preactivated (control) and 15% of the adenylate cyclase pretreated with forskolin. Adenylate cyclase solubilized from control membranes or GTP-gamma-S preactivated membranes was partially purified by using forskolin-agarose affinity chromatography. The amount of Gs alpha protein in the partially purified preparations was determined by immunoblotting with RM antibody. There was 3-fold more Gs alpha detected in partially purified adenylate cyclase from preactivated membranes than in the partially purified adenylate cyclase from control membranes. Partially purified adenylate cyclase from preactivated membranes was immunoprecipitated with RM antibody and the amount of adenylate cyclase activity immunoprecipitated (65% of total) corresponded to the amount of Gs alpha protein immunoprecipitated. Only 15% of the partially purified adenylate cyclase from control membranes was immunoprecipitated. The presence of other G proteins in the partially purified preparations of adenylate cyclase was investigated by using specific antisera that detect Go alpha, Gi alpha, and G beta. The G beta protein was the only subunit detected in the partially purified preparations of adenylate cyclase and the amount of G beta was about the same in adenylate cyclase from preactivated membranes and from control membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Examination of components of the cAMP system in primary cultures of differentiating chick myoblasts revealed a basal intracellular cAMP level of 50–100 pmole/mg of DNA, which increased ten to fifteen-fold for approximately 1 hr between 37.5 and 39.5 hr of culture, only 5–6 hr before the initiation of myoblast fusion. Activities of the enzymes adenylate cyclase and protein kinase were examined during the initial stages of myoblast differentiation. Both the basal activity and the degree of NaF stimulation of adenylate cyclase increased during the time examined, the appearance of these changes coinciding in time of culture with the observed peak of cAMP. The protein kinase present was sensitive to cAMP, and its basal and cAMP stimulated activities increased throughout the prefusion period of culture. The results suggest a causal relationship between the increase in adenylate cyclase activities, the increase in intracellular cAMP, and the onset of fusion; and the possibility that intracellular cAMP levels control the expression of myoblast differentiation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号