首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is an important signal molecule in stress responses. Accumulation of secondary metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. NO has been reported to play important roles in elicitor-induced secondary metabolite production in tissue and cell cultures of medicinal plants. Better understanding of NO role in the biosynthesis of such metabolites is very important for optimizing the commercial production of those pharmaceutically significant secondary metabolites. This paper summarizes progress made on several aspects of NO signal leading to the production of plant secondary metabolites, including various abiotic and biotic elicitors that induce NO production, elicitor-triggered NO generation cascades, the impact of NO on growth development and programmed cell death in medicinal plants, and NO-mediated regulation of the biosynthetic pathways of such metabolites. Cross-talks among NO signaling and reactive oxygen species, salicylic acid, and jasmonic acid are discussed. Some perspectives on the application of NO donors for induction of the secondary metabolite accumulation in plant cultures are also presented.  相似文献   

2.
J Weiske  A Wiesner 《Nitric oxide》1999,3(2):123-131
In contrast to the vertebrate immune system, nearly nothing is known about the immunological role of nitric oxide (NO) in invertebrates. This study provides evidence of the presence of a NO synthase (NOS) activity in an immune-competent, macrophage-like insect hemocyte line, previously established from larvae of the lepidopteran insect Estigmene acraea. As proven by photometric determination of nitroblue tetrazolium reduction after cell fixation, the E. acraea cells possess NADPH diaphorase (NADPHd) activity. This NADPH diaphorase activity was NADPH dependent, not inhibitable by superoxide dismutase, influenced by extracellular addition of L-arginine, and inhibited in a dose-dependent manner by the specific NOS inhibitor Nomega-monomethyl-L-arginine. Furthermore, the NADPH diaphorase activity was stimulated within 30 min by the addition of insect pathogenic bacteria (Bacillus thuringiensis var. kurstaki, Photorhabdus luminescens), bacterial lipopolysaccharide, and silica beads. In activated E. acraea cell suspensions strongly increased amounts of L-citrulline and enhanced levels of total nitrite/nitrate (as NO derivates) can be determined. This is the first report on stimulable NOS activity in insect hemocytes.  相似文献   

3.
Mixed fermentation for natural product drug discovery   总被引:1,自引:0,他引:1  
Natural products continue to play a major role in drug discovery and development. However, chemical redundancy is an ongoing problem. Genomic studies indicate that certain groups of bacteria and fungi have dozens of secondary metabolite pathways that are not expressed under standard laboratory growth conditions. One approach to more fully access the metabolic potential of cultivatable microbes is mixed fermentation, where the presence of neighboring microbes may induce secondary metabolite synthesis. Research to date indicates that mixed fermentation can result in increased antibiotic activity in crude extracts, increased yields of previously described metabolites, increased yields of previously undetected metabolites, analogues of known metabolites resulting from combined pathways and, importantly, induction of previously unexpressed pathways for bioactive constituents.  相似文献   

4.
NADPH-dependent oxygen utilization by liver microsomal fractions was stimulated by the addition of increasing concentrations of butylated hydroxyanisole concomitant with the inhibition of benzphetamine N-demethylase activity. The apparent conversion of monooxygenase activity to an oxidase-like activity in the presence of the antioxidant was correlated with the partial recovery of the reducing equivalents from NADPH in the form of increased hydrogen peroxide production. The progress curve of liver microsomal NADPH oxidase activity in the presence of butylated hydroxyanisole displayed a lag phase indicative of the formation of a metabolite capable of uncoupling the monooxygenase activity. Ethyl acetate extracts of microsomal reaction mixtures obtained in the presence of butylated hydroxyanisole, oxygen, and NADPH stimulated the NADPH oxidase activity of either liver microsomes or purified NADPH-cytochrome c (P-450) reductase. Using high performance liquid chromatography, gas chromatography, and mass spectrometry techniques, two metabolites of butylated hydroxyanisole, namely t-butylhydroquinone and t-butylquinone, were identified. The quinone metabolite and/or its 1-electron reduction product interact with the flavoprotein reductase to directly link the enzyme to the reduction of oxygen which results in an inhibition of the catalytic activity of the cytochrome P-450-dependent monooxygenase.  相似文献   

5.
Phosphoinositide 3-kinase (PI3K) has important functions in various biological systems, including immune response. Although the role of PI3K in signaling by antigen-specific receptors of the adaptive immune system has been extensively studied, less is known about the function of PI3K in innate immunity. In the present study, we demonstrate that macrophages deficient for PI3K (p85alpha regulatory subunit) are impaired in nitric oxide (NO) production upon lipopolysaccharide and interferon-gamma stimulation and thus vulnerable for intracellular bacterial infection such as Chlamydophila pneumoniae. Although expression of inducible nitric-oxide synthase (iNOS) is induced normally in PI3K-deficient macrophages, dimer formation of iNOS protein is significantly impaired. The amount of intracellular tetrahydrobiopterin, a critical stabilizing cofactor for iNOS dimerization, is decreased in the absence of PI3K. In addition, induction of GTP cyclohydrolase 1, a rate-limiting enzyme for biosynthesis of tetrahydrobiopterin, is greatly reduced. Our current results demonstrate a critical role of class IA type PI3K in the bactericidal activity of macrophages by regulating their NO production through GTP cyclohydrolase 1 induction.  相似文献   

6.
Two metabolites have been isolated from rat renal microsomes incubated with 25-hydroxycholecalciferol. Postmitochondrial supernatant fractions from kidneys of thyroidectomized and parathyroidectomized rats were incubated with magnesium acetate, potassium acetate, an NADPH generating system, and 25-hydroxycholecalciferol at a level of 20 micrograms/ml postmitochondrial supernatant for 60 min at 30 degrees C. Lipid extracts of the incubation mixtures were purified by silica gel TLC and HPLC. Two peaks were obtained. Metabolite chi 2 eluted at 18 min and metabolite chi 1 at 23 min when chromatographed on a silica column developed with hexane-isopropanol. Metabolites chi 1 and chi 2 were found to have maximal absorbance at 265 nm. Both metabolites were periodate sensitive, indicating vicinal hydroxyl groups. Mass spectral analysis of metabolite chi 2, which was isolated in greater quantity than metabolite chi 1, indicates that metabolite chi 2 had resulted from hydroxylation of the A ring. Results indicate that 25-hydroxycholecalciferol is hydroxylated on carbon 2 or carbon 4 by renal microsomes. Metabolites chi 1 and chi 2, because of similarity in chromatographic migration and periodate sensitivity, are, perhaps, isomers or 2- and 4-hydroxylated metabolites.  相似文献   

7.
In the marine environment, any living or non-living surface is exposed to bacterial colonization. Many invertebrate species in temperate, tropical and Antarctic regions have demonstrated chemical defences against the formation of microbial films. In the present study, the antimicrobial activity of sub-Arctic invertebrates was investigated for the first time. Crude extracts of abundant invertebrates belonging to several taxonomic groups were tested for their inhibitory effects on the growth of five sympatric phylogenetically diverse bacterial strains. Six out of 18 (33%) crude extracts inhibited bacterial growth at natural extract concentrations. The crude extract of the sponge Haliclona viscosa inhibited growth of all five bacterial strains, suggesting the presence of metabolites with broad-spectrum activity. Three active compounds were isolated from H. viscosa having antibacterial properties similar to those of the crude extract. Our data indicate that antibacterial secondary metabolites are present in sub-Arctic marine invertebrates but are less abundant than in temperate, tropical or Antarctic species.  相似文献   

8.
Due to the negative consequences carried by the usage of synthetic insecticides, a global interest into finding substitutes for these chemical compounds through natural products has arisen. When yielded to external attacks, plants generally produce metabolites to defend themselves. The physicochemical characteristics of this kind of compounds have allowed their usage as potential bioinsecticides. The Hymenaea courbaril L. (algarrobo) has proven to be a plant rich in metabolites with outstanding biological activity, in such a way that some of its extracts have been tested as insecticides. The goal of this study was to know the phytochemical composition of Hymenaea courbaril L.’s resin and perform evaluations in vivo of its toxic and genotoxic effects in the biological model Drosophila melanogaster. For this, two resin extracts were prepared and both a phytochemical analysis were carried out on them, having found in the ethanolic total extract the presence of terpenes, flavonoids and coumarins, while in the partial ethanolic extract only presence of terpenes and flavonoids was found. Drosophila larvae were submitted to different concentrations of the extracts and both the survival and the sexual ratio were evaluated, finding that larvae are more sensitive to the partial ethanolic extract. Subsequently, the induction of somatic mutation and mitotic recombination (SMART) was evaluated in the flies’ eyes. The most significant affectations at a genotoxic level were found when larvae were tested with the partial extract, indicating that possibly the coumarins absence makes this insect more susceptible to damages at a genetic material level.  相似文献   

9.
The enzyme responsible for the stimulation by ATP AND NADPH of light emission catalyzed by bacterial luciferase has been partially purified from extracts of the luminescent bacterium, Photobacterium phosphoreum. The stimulatory activity was found to be stabilized by high concentrations of mercaptoethanol, permitting it to be separated from luciferase into an active and stable form and enabling further characterization of its functional properties. The activity of the enzyme was shown to be dependent not only on ATP and NADPH but also on the presence of a long chain fatty acid, and was inhibited by the addition of NADH and horse liver alcohol dehydrogenase. The specificity for fatty acids, as measured by the stimulation of luciferase activity, had a very limited range, with maximal luminescence being obtained with myristic acid and lower responses being observed only with tridecanoic and pentadecanoic acid. These results provide evidence in vitro for an enzyme in bioluminescent bacteria that functions as a fatty acid reductase converting fatty acids to aldehydes which in turn can be utilized by luciferase in the light-emitting reaction.  相似文献   

10.
11.
Secondary metabolites characterization of ethanol extracts of Palicourea sessilis leaves and stems by UPLC-DAD-ESI-MS/MS led to putative identification of hydrolysable tannins in leaf extract (ESI negative mode) while hydroxycinnamic acid amides (HCA) such as N-p-coumaroylputrescine and N-feruloylagmatine were detected in both leaf and stems extracts in the ESI positive mode. Secondary metabolites quantification data showed a higher content of total phenolic in the leaf extract while the total alkaloids contents are statistically equivalent in both of the extracts. Furthermore, monoterpene indole alkaloids were not detected in both extracts. The presence of HCA is here firstly reported for a Palicourea species. This finding increases the classes of secondary metabolites occurring in this genus.  相似文献   

12.
A high-performance liquid chromatographic method for the determination of N-1-hydroxyethylflurazepam, the major urinary metabolite of flurazepam, in human urine is described. Urine specimens were incubated enzymatically to deconjugate N-1-hydroxyethylflurazepam glucuronide (metabolite) and were then extracted at pH 9.0 to extract the metabolite. The extracts were chromatographed on a microparticulate silica gel column using automatic sample injection, isocratic elution at ambient temperature and UV monitoring at 254 nm. The internal stanard was 7-chloro-5-(2′-chlorophenyl)-1,3-dihydro-1-2-dimethylaminoethyl-2H-1,4-benzodiazepine-2-one. The recovery from urine, in the 0.5–25.0 μg/ml range, was 96.5 ± 11.5% (S.D.), and the sensitivity limit was 0.5 μg/ml. The method was found to be specific for N-1-hydroxyethylflurazepam in the presence of intact flurazepam and other possible urinary metabolites of flurazepam. The method was successfully applied to urine specimens collected from human subjects following the administration of 30-mg single oral doses of flurazepam dihydrochloride.  相似文献   

13.
A variety of metabolites are routinely assayed after perchloric acid extraction of plant tissues. A common technique uses coupled enzyme assays that produce or consume pyridine nucleotides together with spectrophotometric detection at 340 nm. Because of the presence of pigments in plant tissues, the high absorbance of such extracts usually limits the amount of extract that can be assayed spectrophotometrically. Here, we show that after batch adsorption with AG50WX8 (H+ form), the absorbance of potato root perchloric acid extracts at 340 nm is significantly reduced. This clean up procedure does not interfere with the assay or the recovery of anionic metabolites such as hexose phosphates. It therefore facilitates spectrophotometric assays of metabolites in plant extracts with high absorbance.  相似文献   

14.
Urine protein loss in immune complex-mediated diseases such as lupus nephritis is associated with podocyte foot process effacement (podocytopathy) but is not always dependent on glomerular immune complex deposition. Several murine and human studies have associated lupus nephritis with inducible nitric oxide synthase (iNOS) expression in what appear to be podocytes. This study was conducted to determine mechanisms of immune-complex-independent and iNOS-dependent podocyte dysfunction. Conditionally immortalized podocytes were cultured with lipopolysaccharide (LPS) and nitric oxide (NO), superoxide (SO), or peroxynitrite donors in the presence or absence of inhibitors of iNOS, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or monocyte chemotactic protein 1 (MCP-1), or with sepiapterin to increase coupling of iNOS homodimers. Podocyte NO, SO, and MCP-1 production and nitrotyrosine modifications were determined. The podocytopathy phenotype was determined by measuring cell motility and membrane permeability to albumin. This study determined that NO produced by iNOS is sufficient and necessary to induce podocytopathy. NO probably induces this phenotype via hypoxia-inducible factor 1α and cell division control protein 42 and Ras-related C3 botulinum toxin substrate 1 pathways. With LPS stimulation, neither SO nor peroxynitrite produced by uncoupled iNOS or NADPH oxidase nor MCP-1 was sufficient to induce the full phenotype. This study supports the notion that iNOS may induce autocrine podocyte dysfunction. Thus, targeting iNOS or the pathways of its induction may have therapeutic benefit.  相似文献   

15.
Intracellular redox levels play an important role in physiology and pathophysiology. The principal intracellular reductant is NADPH, which is required for both the proper activity of the entire antioxidant system and important prooxidant enzymes such as nitric oxide synthase and NADPH oxidase. Thus an easy and accurate measurement of NADPH is very desirable. The method described in this paper is based on the fact that NADH and NADPH (not NAD(+) and NADP(+)) affect absorbance at 340 nm. A single cell extract is separated into three aliquots (A(1), A(2), and A(3)). A(1) is untreated and the absorbance at 340 nm is measured. A(2) is treated with an enzyme that converts all of the NADP(+) to NADPH and then the absorbance at 340 nm is measured. A(3) is treated with an enzyme that converts all of the NADPH to NADP(+) and then the absorbance at 340 nm is measured. A(1) - A(3) is the NADPH content and A(2) - A(1) is the NADP(+) content of the extract. Using this method, we have obtained full recovery of all added nucleotides from cell extracts, thus making the method suitable for the quick determination of NADP(+) and NADPH in living cells. We conclude that this method for the measurement of NADP(+) and NADPH is rapid, simple, accurate, and reliable.  相似文献   

16.
Due to the negative consequences carried by the usage of synthetic insecticides, a global interest into finding substitutes for these chemical compounds through natural products has arisen. When yielded to external attacks, plants generally produce metabolites to defend themselves. The physicochemical characteristics of this kind of compounds have allowed their usage as potential bioinsecticides. The Hymenaea courbaril L. (algarrobo) has proven to be a plant rich in metabolites with outstanding biological activity, in such a way that some of its extracts have been tested as insecticides. The goal of this study was to know the phytochemical composition of Hymenaea courbaril L.’s resin and perform evaluations in vivo of its toxic and genotoxic effects in the biological model Drosophila melanogaster. For this, two resin extracts were prepared and both a phytochemical analysis were carried out on them, having found in the ethanolic total extract the presence of terpenes, flavonoids and coumarins, while in the partial ethanolic extract only presence of terpenes and flavonoids was found. Drosophila larvae were submitted to different concentrations of the extracts and both the survival and the sexual ratio were evaluated, finding that larvae are more sensitive to the partial ethanolic extract. Subsequently, the induction of somatic mutation and mitotic recombination (SMART) was evaluated in the flies’ eyes. The most significant affectations at a genotoxic level were found when larvae were tested with the partial extract, indicating that possibly the coumarins absence makes this insect more susceptible to damages at a genetic material level.  相似文献   

17.
Desorption electrospray ionization (DESI) was utilized to monitor the presence of targeted central carbon metabolites within bacterial cell extracts and the quench supernatant of Escherichia coli. The targeted metabolites were identified through tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation in the negative ion mode. Picogram detection limits were achieved for a majority of the metabolites during MS/MS analysis of standard metabolite solutions. In a [U-(13)C]glucose pulse experiment, where uniformly labeled glucose was fed to E. coli, the corresponding fragment ions from labeled metabolites in extracts were generally observed. There was evidence of matrix effects including moderate suppression by other metabolites within the spectra of the labeled and unlabeled extracts. To improve the specificity and sensitivity of detection, optimized in situ ambient chemical reactions using DESI and extractive electrospray ionization (EESI) were carried out for targeted compounds. This study provides the first indication of the potential to perform in situ targeted metabolomics of a bacterial sample via ambient ionization mass spectrometry.  相似文献   

18.
Insects and insect-derived materials have been implicated as a risk factor for sensitization and subsequent elicitation of allergic rhinitis and allergic bronchial asthma. During the last decades, insects other than those known as allergenic, were investigated for their potential role in inducing and triggering an IgE immune response. Among these, the silverfish, an insect belonging to the Thysanura order, appeared to be of particular interest. Silverfish (Lepisma saccharina) is the most primitive living insect, and represents a descendent of the ancestral wingless insects. They are 3-12 mm long, have three tail feelers and are covered with shiny scales. They shun light and need a humid environment and their diet consists of carbohydrate materials such as paper and book-binding glue, crumbs of bread and flour. Because of these features, silverfish finds an optimal habitat both in dwellings and workplaces and in spite of its antiquity, silverfish has succeeded in exploiting the new opportunity created by man. Although its importance significantly increased when it has been demonstrated that house dust contains significant silverfish levels even in houses where the inhabitants were unaware of its presence, no silverfish extract for diagnosis of allergic diseases is commercially available yet. Identification of optimal extraction conditions and characterization of allergenic extracts are the first steps to obtain an effective allergen preparation suitable for diagnosis and therapy, and will be useful as a reference preparation for assessing silverfish exposure in different indoor environments. It has been cloned and characterized a silverfish tropomyosin, named Lep s 1, which represents the first allergen identified in silverfish extract and can be regarded as a molecule cross-reactive among inhalant and edible invertebrates allergenic sources. rLep s 1 displayed biological activity, suggesting that it could be regarded as a useful tool to study the role of silverfish tropomyosin in the sensitization to invertebrate allergic sources.  相似文献   

19.
We evaluated the innate immune response to various synthetic CpG-containing oligodeoxynucleotides (CpG ODNs) by measuring nitric oxide production in the peripheral blood monocytes from turkey poults. The results indicate that the presence of the CpG dinucleotide in ODNs was a prerequisite for activation of turkey monocytes and induction of nitric oxide (NO) synthesis. CpG motifs and sequence structure of the ODNs were also found to influence stimulatory activity greatly. The most potent CpG ODN to induce NO synthesis in turkey monocytes was human-specific CpG ODN M362, followed by CpG ODN 2006 (human), CpG ODN#17 (chicken) and CpG ODN 1826 (mouse). The optimal CpG motif for NO induction was GTCGTT. Phosphorothioate modification of CpG ODNs also significantly increased stimulatory activity. Compared with chicken monocytes, turkey monocytes appeared to be less sensitive to CpG motif variation, whereas chicken monocytes were found to respond more strictly to human-specific CpG ODNs or ODNs that contain GTCGTT motifs.  相似文献   

20.
The metabolic composition of fecal extracts provides a window for elucidating the complex metabolic interplay between mammals and their intestinal ecosystems, and these metabolite profiles can yield information on a range of gut diseases. Here, the metabolites present in aqueous fecal extracts of humans, mice and rats were characterized using high-resolution (1)H NMR spectroscopy coupled with multivariate pattern recognition techniques. Additionally, the effects of sample storage and preparation methods were evaluated in order to assess the stability of fecal metabolite profiles, and to optimize information recovery from fecal samples. Finally, variations in metabolite profiles were investigated in healthy mice as a function of time. Interspecies variation was found to be greater than the variation due to either time or sample preparation. Although many fecal metabolites were common to the three species, such as short chain fatty acids and branched chain amino acids, each species generated a unique profile. Relatively higher levels of uracil, hypoxanthine, phenylacetic acid, glucose, glycine, and tyrosine amino acids were present in the rat, with beta-alanine being unique to the rat, and glycerol and malonate being unique to the human. Human fecal extracts showed a greater interindividual variation than the two rodent species, reflecting the natural genetic and environmental diversity in human populations. Fecal composition in healthy mice was found to change over time, which might be explained by altered gut microbial presence or activity. The systematic characterization of fecal composition across humans, mice, and rats, together with the evaluation of inherent variation, provides a benchmark for future studies seeking to determine fecal biomarkers of disease and/or response to dietary or therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号