首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132T and B. longum JCM1217T) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required.  相似文献   

2.
Gut microbes symbiotically colonize the gastrointestinal (GI) tract, interacting with each other and their host to maintain GI tract homeostasis. Recent reports have shown that gut microbes help protect the gut from colonization by pathogenic microbes. Here, we report that commensal microbes prevent colonization of the GI tract by the pathogenic fungus, Candida albicans. Wild‐type specific pathogen‐free (SPF) mice are resistant to C. albicans colonization of the GI tract. However, administering certain antibiotics to SPF mice enables C. albicans colonization. Quantitative kinetics of commensal bacteria are inversely correlated with the number of C. albicans in the gut. Here, we provide further evidence that transplantation of fecal microbiota is effective in preventing Candida colonization of the GI tract. These data demonstrate the importance of commensal bacteria as a barrier for the GI tract surface and highlight the potential clinical applications of commensal bacteria in preventing pathogenic fungal infections.  相似文献   

3.
The aim of this study was to develop novel anaerobic media using gellan gum for the isolation of previously uncultured rumen bacteria. Four anaerobic media, a basal liquid medium (BM) with agar (A‐BM), a modified BM (MBM) with agar (A‐MBM), an MBM with phytagel (P‐MBM) and an MBM with gelrite (G‐MBM) were used for the isolation of rumen bacteria and evaluated for the growth of previously uncultured rumen bacteria. Of the 214 isolates composed of 144 OTUs, 103 isolates (83 OTUs) were previously uncultured rumen bacteria. Most of the previously uncultured strains were obtained from A‐MBM, G‐MBM and P‐MBM, but the predominant cultural members, isolated from each medium, differed. A‐MBM and G‐MBM showed significantly higher numbers of different OTUs derived from isolates than A‐BM (< 0·05). The Shannon index indicated that the isolates of A‐MBM showed the highest diversity (H′ = 3·89) compared with those of G‐MBM, P‐MBM and A‐BM (H′ = 3·59, 3·23 and 3·39, respectively). Although previously uncultured rumen bacteria were isolated from all media used, the ratio of previously uncultured bacteria to total isolates was increased in A‐MBM, P‐MBM and G‐MBM.  相似文献   

4.
[目的]研究(S)-雌马酚对人体肠道菌群的体外调控作用和人体肠道菌群对(S)-雌马酚的代谢衍生作用。[方法]采用人体肠道菌群体外批量发酵、细菌16S rRNA基因高通量测序、气相色谱、液相色谱和质谱等检测(S)-雌马酚与人体肠道菌群体外相互作用。[结果]体外添加(S)-雌马酚对总体人肠道菌群结构和短链脂肪酸产量影响不明显。添加0.45 mmol/L (S)-雌马酚组与对照组相比,未检测到相对丰度发生显著变化的细菌;添加0.90 mmol/L (S)-雌马酚组与对照组相比,显著增加了肠杆菌科(Enterobacteriaceae)等条件致病菌的相对丰度,减少了潜在益生菌粪球菌属(Coprococcus)的比例。代谢分析发现,发酵培养液中(S)-雌马酚的浓度降低了约15%−30%,推测可能被微生物进一步降解或衍生修饰。[结论]从体外调控肠道菌群的角度判断,0.45 mmol/L (S)-雌马酚相对较安全,而0.90 mmol/L (S)-雌马酚可能会破坏肠道菌群平衡。(S)-雌马酚可以被人体肠道菌群进一步代谢,其特定代谢产物的结构与功能及其体内生物安全性有待进一步研究。  相似文献   

5.
【目的】银杏提取物在防治心血管系统和神经系统疾病方面发挥重要功能。鉴于肠道菌群已被认定为一个新兴的药物作用靶标,研究银杏双黄酮和银杏内酯与人体肠道菌群之间的相互作用具有非常重要的意义,这将为进一步理解银杏提取物的功能和作用机制奠定基础。【方法】本研究使用人体肠道菌群体外批量发酵、细菌总量测定、细菌16S rDNA高通量测序、气相色谱和液相色谱检测等方法,对银杏双黄酮和银杏内酯B单独或复合在体外与人体肠道菌群的相互作用进行研究。【结果】银杏双黄酮和银杏内酯B单独添加对人体肠道菌群总量、肠道菌群结构组成和短链脂肪酸产量没有显著影响。但有意思的是,复合添加银杏双黄酮和银杏内酯B后,Coriobacteriaceae科和Cupriavidus属细菌的比例显著升高,Gemella菌细菌比例显著降低。功能基因预测分析发现,编码K00076、K12143、K07716和K00220的基因在复合添加银杏双黄酮和银杏内酯B后显著富集。K00076和K00220是氧化还原酶,催化CH-OH供体基团的电子转移,可能参与银杏双黄酮和银杏内酯B的代谢和修饰。HPLC检测发现,人体肠道菌群体外对银杏双黄酮和银杏内脂B的降解修饰率分别为70%和35%左右。【结论】体外复合添加银杏双黄酮和银杏内酯B可显著改变肠道某些细菌的丰度。同时,体外研究表明肠道菌群具有代谢修饰银杏双黄酮和银杏内酯B的功能。  相似文献   

6.
This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.  相似文献   

7.

Background  

The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects.  相似文献   

8.
Around a third of oral bacteria cannot be grown using conventional bacteriological culture media. Community profiling targeting 16S rRNA and shotgun metagenomics methods have proved valuable in revealing the complexity of the oral bacterial community. Studies investigating the role of oral bacteria in health and disease require phenotypic characterizations that are possible only with live cultures. The aim of this study was to develop novel culture media and use an in vitro biofilm model to culture previously uncultured oral bacteria. Subgingival plaque samples collected from subjects with periodontitis were cultured on complex mucin-containing agar plates supplemented with proteose peptone (PPA), beef extract (BEA), or Gelysate (GA) as well as on fastidious anaerobe agar plus 5% horse blood (FAA). In vitro biofilms inoculated with the subgingival plaque samples and proteose peptone broth (PPB) as the growth medium were established using the Calgary biofilm device. Specific PCR primers were designed and validated for the previously uncultivated oral taxa Bacteroidetes bacteria HOT 365 and HOT 281, Lachnospiraceae bacteria HOT 100 and HOT 500, and Clostridiales bacterium HOT 093. All agar media were able to support the growth of 10 reference strains of oral bacteria. One previously uncultivated phylotype, Actinomyces sp. HOT 525, was cultivated on FAA. Of 93 previously uncultivated phylotypes found in the inocula, 26 were detected in in vitro-cultivated biofilms. Lachnospiraceae bacterium HOT 500 was successfully cultured from biofilm material harvested from PPA plates in coculture with Parvimonas micra or Veillonella dispar/parvula after colony hybridization-directed enrichment. The establishment of in vitro biofilms from oral inocula enables the cultivation of previously uncultured oral bacteria and provides source material for isolation in coculture.  相似文献   

9.
Aims: To evaluate the diversity of dominant autochthonous microbiota along the digestive tract of juvenile Epinephelus coioides following the dietary administration of probiotic Bacillus pumilus for 60 days. Methods and Results: Polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) with subsequently sequencing analysis was used to assess the gut microbiota. Generally similar DGGE patterns were observed in the foregut, midgut and hindgut of E. coioides, while the similarity dendrogram clearly revealed three different clusters depending on the three compartments of the GI tract. Dietary administration of B. pumilus stimulated its colonization in each compartment of the digestive tract. Samples collected from the probiotic group and the control group showed similar DGGE patterns, and no significant difference in the total number of bands and the Shannon index were detected between the probiotic group and the control group, suggested that B. pumilus exert no significant effect on the gut microbiota. However, various potentially beneficial bacteria, such as uncultured Bacillus sp. clone QJNY94‐like, Nitratireductor sp. YCSC5‐like, Methylobacterium hispanicum‐like and Microbacterium sp. YACS1‐like bacteria were stimulated by probiotic B. pumilus, while the potential harmful Staphylococcus saprophyticus‐like bacterium was depressed. Conclusions: Autochthonous gut microbiota of E. coioides was modulated to some degree, not significant, by probiotic B. pumilus, various potentially beneficial bacteria were selectively stimulated, while one potential harmful species was depressed. Significance and Impact of the Study: This work represents the first report that dietary administration of probiotic B. pumilus modulated the gut microbiota of E. coioides. These findings broaden our understanding of probiotic effects at the gut level, which is helpful in understanding the mechanisms that underpin host benefits.  相似文献   

10.
11.
Endothermic mammals have a high energy cost to maintain a stable and high body temperature (Tb, around 37°C). Thyroid hormones are a major regulator for energy metabolism and Tb. The gut microbiota is involved in modulating host energy metabolism. However, whether the interaction between the gut microbiota and thyroid hormones is involved in metabolic and thermal regulations is unclear. We hypothesized that thyroid hormones via an interaction with gut microbiota orchestrate host thermogenesis and Tb. l -thyroxine-induced hyperthyroid Mongolian gerbils (Meriones unguiculatus) increased resting metabolic rate (RMR) and Tb, whereas Methimazole-induced hypothyroid animals decreased RMR. Both hypothyroid and hyperthyroid animals differed significantly in faecal bacterial community. Hyperthyroidism increased the relative abundance of pathogenic bacteria, such as Helicobacter and Rikenella, and decreased abundance of beneficial bacteria Butyricimonas and Parabacteroides, accompanied by reduced total bile acids and short-chain fatty acids. Furthermore, the hyperthyroid gerbils transplanted with the microbiota from control donors increased type 2 deiodinase (DIO2) expression in the liver and showed a greater rate of decline of both serum T3 and T4 levels and, consequently, a more rapid recovery of normal RMR and Tb. These findings indicate that thyroid hormones regulate thermogenesis depending on gut microbiota and colonization with normal microbiota by caecal microbial transplantation attenuates hyperthyroid-induced thermogenesis. This work reveals the functional consequences of the gut microbiota-thyroid axis in controlling host metabolic physiology and Tb in endotherms.  相似文献   

12.
空间环境中的特殊因素会导致航天员肠道菌群及其代谢产物的失调,对机体会产生系统性的生理影响。本文综述了近年来太空飞行/模拟空间环境对肠道菌群及其代谢产物影响的研究进展。太空飞行/模拟空间环境(space flight/simulated space environment,SF/SPE)可导致侵袭性致病菌的增多及有益菌的减少,肠道炎症加剧与通透性增加,也会引起菌群的有益代谢物减少或有害代谢物增加,进而导致机体内代谢的紊乱,或可诱发其他系统的损伤,从而不利于航天员的健康与工作效率。总结太空飞行/模拟空间环境对肠道菌群产生的影响,可为该领域的后续研究与航天员的在轨健康防护提供科学依据。  相似文献   

13.
Here we report the effects of starvation and insect age on the diversity of gut microbiota of adult desert locusts, Schistocerca gregaria, using denaturing gradient gel electrophoretic (DGGE) analysis of bacterial 16S rRNA genes. Sequencing of excised DGGE bands revealed the presence of only one potentially novel uncultured member of the Gammaproteobacteria in the guts of fed, starved, young or old locusts. Most of the 16S rRNA gene sequences were closely related to known cultured bacterial species. DGGE profiles suggested that bacterial diversity increased with insect age and did not provide evidence for a characteristic locust gut bacterial community. Starved insects are often more prone to disease, probably because they compromise on immune defence. However, the increased diversity of Gammaproteobacteria in starved locusts shown here may improve defence against enteric threats because of the role of gut bacteria in colonization resistance.  相似文献   

14.
肠道微生物菌群组成的变化对正常生理的影响及其在疾病中的作用逐渐成为研究热点。肠道微生物菌群通过脑肠轴影响宿主生理学的各个方面,包括脑-肠交流、脑功能甚至行为。对无菌动物、被致病细菌感染的、使用益生菌或用抗生素药物的动物研究表明,肠道微生物菌群可以调节宿主焦虑样症状及行为。研究表明对肠道微生物菌群的调节可能是治疗复杂中枢神经系统失调症的新策略。  相似文献   

15.
Background Mother’s milk is a source of bacteria that influences the development of the infant commensal gut microbiota. To date, the species diversity and relative abundance of lactic acid bacteria in the milk of non‐human primates have not been described. Methods Milk samples were aseptically obtained from 54 female rhesus monkeys (Macaca mulatta) at peak lactation. Following GM17 and MRS agar plating, single bacterial colonies were isolated based on difference in morphotypes, then grouped based on whole‐cell protein profiles on SDS–PAGE. Bacterial DNA was isolated and the sequence the 16S rRNA gene was analyzed. Results A total of 106 strains of 19 distinct bacterial species, belonging to five genera, Bacillus, Enterococcus, Lactobacillus, Pediococcus, and Streptococcus, were identified. Conclusions Maternal gut and oral commensal bacteria may be translocated to the mammary gland during lactation and present in milk. This pathway can be an important source of commensal bacteria to the infant gut and oral cavity.  相似文献   

16.
肠道疾病是养殖林麝(Moschus berezovskii)常见疾病。动物肠道微生物伴随宿主进化并与胃肠道构成了复杂的微生态系统。为探究不同饲养环境对圈养林麝肠道微生物组成和功能的影响,本研究对采自国内5个不同养殖场的215份粪便样品进行了16S rRNA基因高通量测序,对比分析不同养殖场林麝肠道微生物组成、多样性和功能的差异。结果显示,厚壁菌门和拟杆菌门是未喂食复合益生菌的祁连县养殖场林麝肠道菌群的绝对优势菌门,而喂食复合益生菌的甘肃两当县和陕西凤县的4家养殖场林麝肠道菌群的绝对优势菌门为厚壁菌门和变形菌门。不同养殖场林麝肠道菌群组成、优势菌门、优势菌属、潜在致病菌、代谢及疾病相关功能均有显著差异。祁连县养殖场林麝肠道微生物的α多样性和疾病相关功能表达量显著低于其他养殖场,并以肠型2为主,其主导菌为厚壁菌门、UCG-005和拟杆菌属;两当县和凤县的4家养殖场林麝肠道菌群潜在致病菌相对丰度较低。本研究推测食物组成差异可能是导致不同养殖场林麝肠道微生物差异的主要因素,复合益生菌的使用可能是导致α多样性和潜在致病菌下降的重要因素。该结果可为林麝的人工养殖和有效管理提供科学依据,也对人工饲养...  相似文献   

17.
Different factors may modulate the gut microbiota of animals. In any particular environment, diet, genetic factors and human influences can shape the bacterial communities residing in the gastrointestinal tract. Metagenomic approaches have significantly expanded our knowledge on microbiota dynamics inside hosts, yet cultivation and isolation of bacterial members of these complex ecosystems may still be necessary to fully understand interactions between bacterial communities and their host. A dual approach, involving culture‐independent and ‐dependent techniques, was used here to decipher the microbiota communities that inhabit the gastro intestinal tract of free‐range, broiler and feral chickens. In silico analysis revealed the presence of a core microbiota that is typical of those animals that live in different geographical areas and that have limited contact with humans. Anthropic influences guide the metabolic potential and the presence of antibiotic resistance genes of these different bacterial communities. Culturomics attempts, based on different cultivation conditions, were applied to reconstruct in vitro the microbiota of feral chickens. A unique strain collection representing members of the four major phyla of the poultry microbiota was assembled, including bacterial strains that are not typically retrieved from the chicken gut.  相似文献   

18.
Alteration of the gut microbiota plays an important role in animal health and metabolic diseases. However, little is known with respect to the influence of environmental osmolality on the gut microbial community. The aim of the current study was to determine whether the reduction in salinity affects the gut microbiota and identify its potential role in salinity acclimation. Using Oryzias melastigma as a model organism to perform progressive hypotonic transfer experiments, we evaluated three conditions: seawater control (SW), SW to 50% sea water transfer (SFW) and SW to SFW to freshwater transfer (FW). Our results showed that the SFW and FW transfer groups contained higher operational taxonomic unit microbiota diversities. The dominant bacteria in all conditions constituted the phylum Proteobacteria, with the majority in the SW and SFW transfer gut comprising Vibrio at the genus level, whereas this population was replaced by Pseudomonas in the FW transfer gut. Furthermore, our data revealed that the FW transfer gut microbiota exhibited a reduced renin–angiotensin system, which is important in SW acclimation. In addition, induced detoxification and immune mechanisms were found in the FW transfer gut microbiota. The shift of the bacteria community in different osmolality environments indicated possible roles of bacteria in facilitating host acclimation.  相似文献   

19.
High temperatures (e.g., fever) and gut microbiota can both influence host resistance to infection. However, effects of temperature-driven changes in gut microbiota on resistance to parasites remain unexplored. We examined the temperature dependence of infection and gut bacterial communities in bumble bees infected with the trypanosomatid parasite Crithidia bombi. Infection intensity decreased by over 80% between 21 and 37°C. Temperatures of peak infection were lower than predicted based on parasite growth in vitro, consistent with mismatches in thermal performance curves of hosts, parasites and gut symbionts. Gut bacterial community size and composition exhibited slight but significant, non-linear, and taxon-specific responses to temperature. Abundance of total gut bacteria and of Orbaceae, both negatively correlated with infection in previous studies, were positively correlated with infection here. Prevalence of the bee pathogen-containing family Enterobacteriaceae declined with temperature, suggesting that high temperature may confer protection against diverse gut pathogens. Our results indicate that resistance to infection reflects not only the temperature dependence of host and parasite performance, but also temperature-dependent activity of gut bacteria. The thermal ecology of gut parasite-symbiont interactions may be broadly relevant to infectious disease, both in ectothermic organisms that inhabit changing climates, and in endotherms that exhibit fever-based immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号