首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
越来越多的研究表明某些在环境中普遍存在的人与动物的病原微生物能够跨界侵染不同生物界的寄主。本文就Serratia marcescens,Enterobacter cloacae,Pseudomonas aeuriginosa,Klebsiella pneumoniae等动物条件病原细菌环境菌株跨界侵染植物的研究现状进行了综述。这些病原菌在自然界中普遍存在,能够利用与感染人类相同或不同的侵染策略跨界侵染植物,以拓宽其寄主范围。其中,肺炎克雷伯氏菌(Klebsiella pneumoniae)能在自然条件下引起玉米发生顶腐病,揭示了环境中的某些植物可作为各种病原细菌的天然储存库,在条件合适的情况下可能会感染人类和动物,以及在食品生产中的潜在危害。对这些跨界病原菌的研究,在人、动物和植物流行病学上具有非常重要意义,也为环境科学提出了新的研究热点。  相似文献   

2.
Marine viruses were little studied until 1989, when they were discovered to be extremely abundant in the sea. Virology is now a growing field of science in coral reef research, largely related to an increase in the frequency of coral bleaching events and other coral diseases. Because viruses are obligate symbionts, they are generally perceived as parasitic and harmful to their hosts. However, evidence that viruses confer benefits to their hosts is growing and their role as mutualists is emerging. Here we review both the detrimental and beneficial aspects of viral infections and argue that as the field of coral virology expands, in addition to their pathogenicity, the idea that viruses represent functionally beneficial components of the coral holobiont be considered.  相似文献   

3.
1 Geometrid larvae were collected from larch and fir in the Swiss Alps in 1991–94. Eight geometrid species were found in sufficient numbers to rear out parasitoids: Agriopis aurantiaria, Bupalus piniarius, Epirrita autumnata, Eupithecia lariciata, Odontopera bidentata, Lycia isabellae and Semiothisa liturata were collected from larch, and Puengeleria capreolaria was obtained from fir. 2 Parasitoid species belonging to five different guilds and four families were obtained; however, the taxonomic status of some of these is not completely resolved. 3 The parasitoid complex of the larch‐feeding species was totally different from that of Tortricidae and Tenthredinidae, which feed on the same host tree. In general, there was little overlap in the parasitoid complexes of the larch geometrids, with the most dominant parasitoid of each species reared from only one host. By contrast, many parasitoid species found during our study are also known to attack the same hosts or closely related hosts on different host tree species in different environments, suggesting that host specificity in geometrid parasitoids is more related to host taxonomy than to host plant or habitat.  相似文献   

4.
Dengue viruses are transmitted to humans through the bites of infected female aedine mosquitoes. Differences in the composition and structure of bacterial communities in the midguts of mosquitoes may affect the vector's ability to transmit the disease. To investigate and analyse the role of midgut bacterial communities in viral transmission, midgut bacteria from three species, namely Stegomyia aegypti (= Aedes aegypti), Fredwardsius vittatus (= Aedes vittatus) and Stegomyia albopicta (= Aedes albopictus) (all: Diptera: Culicidae), from dengue‐endemic and non‐endemic areas of Rajasthan, India were compared. Construction and analyses of six 16S rRNA gene libraries indicated that Serratia spp.‐related phylotypes dominated all clone libraries of the three mosquito species from areas in which dengue is not endemic. In dengue‐endemic areas, phylotypes related to Aeromonas, Enhydrobacter spp. and uncultivated bacterium dominated the clone libraries of S. aegypti, F. vittatus and S. albopicta, respectively. Diversity indices analysis and real‐time TaqMan polymerase chain reaction assays showed bacterial diversity and abundance in the midguts of S. aegypti to be higher than in the other two species. Significant differences observed among midgut bacterial communities of the three mosquito species from areas in which dengue is and is not endemic, respectively, may be related to the vectorial capacity of mosquitoes to carry dengue viruses and, hence, to the prevalence of disease in some areas.  相似文献   

5.
In a previous study, we showed that Spiroplasma, a maternally transmitted endosymbiotic bacterium of Drosophila hydei, enhances larval to adult survival of its host when exposed to oviposition attack by the parasitoid wasp Leptopilina heterotoma. The mechanism by which Spiroplasma enhances host survival has not been elucidated. To better understand this mechanism, we compared the growth of wasp larvae in Spiroplasma-infected and uninfected hosts. Our results indicate that wasp embryos in Spiroplasma-infected hosts hatch and grow normally for ~2 days, after which their growth is severely impaired, compared to wasps developing in uninfected hosts. Thus, despite their reduced ability to complete development in Spiroplasma-infected hosts, developing wasps may exert fitness costs on their hosts that are manifested after host emergence. The severity of these costs will influence the degree to which this protective mechanism contributes to the long-term persistence of Spiroplasma in D. hydei. We therefore examined survival to 10-day-old adult stage and fecundity of Spiroplasma-infected flies surviving a wasp treatment. Our results suggest detrimental effects of wasp attack on longevity of Spiroplasma-infected adult flies. However, compared to Spiroplasma-free flies exposed to wasps, Spiroplasma-infected flies exposed to wasps have ~5 times greater survival from larva to 10 day-adult. The relative fecundity of wasp-attacked Spiroplasma-infected females was ~71% that of un-attacked Spiroplasma-free females. Our combined survival and female fecundity results suggest that under high wasp parasitism, the reproductive fitness of Spiroplasma-infected flies may be ~3.5 times greater than that of uninfected females, so it is potentially relevant to the persistence of Spiroplasma in natural populations of D. hydei. Interestingly, Spiroplasma-infected males surviving a wasp attack were effectively sterile during the 3-day period examined. This observation is consistent with the expectation that, as a maternally transmitted symbiont, there is little selective pressure on Spiroplasma to enhance the reproductive fitness of its male hosts.  相似文献   

6.
《Journal of molecular biology》2014,426(23):3892-3906
Viruses are dependent biological entities that interact with the genetic material of most cells on the planet, including the trillions within the human microbiome. Their tremendous diversity renders analysis of human viral communities (“viromes”) to be highly complex. Because many of the viruses in humans are bacteriophage, their dynamic interactions with their cellular hosts add greatly to the complexities observed in examining human microbial ecosystems. We are only beginning to be able to study human viral communities on a large scale, mostly as a result of recent and continued advancements in sequencing and bioinformatic technologies. Bacteriophage community diversity in humans not only is inexorably linked to the diversity of their cellular hosts but also is due to their rapid evolution, horizontal gene transfers, and intimate interactions with host nucleic acids. There are vast numbers of observed viral genotypes on many body surfaces studied, including the oral, gastrointestinal, and respiratory tracts, and even in the human bloodstream, which previously was considered a purely sterile environment. The presence of viruses in blood suggests that virome members can traverse mucosal barriers, as indeed these communities are substantially altered when mucosal defenses are weakened. Perhaps the most interesting aspect of human viral communities is the extent to which they can carry gene functions involved in the pathogenesis of their hosts, particularly antibiotic resistance. Persons in close contact with each other have been shown to share a fraction of oral virobiota, which could potentially have important implications for the spread of antibiotic resistance to healthy individuals. Because viruses can have a large impact on ecosystem dynamics through mechanisms such as the transfers of beneficial gene functions or the lysis of certain populations of cellular hosts, they may have both beneficial and detrimental roles that affect human health, including improvements in microbial resilience to disturbances, immune evasion, maintenance of physiologic processes, and altering the microbial community in ways that promote or prevent pathogen colonization.  相似文献   

7.
In several groups of parasites including insect, flowering plant, fungal, and red algal parasites, morphological similarities of the parasites and their specific hosts have led to hypotheses that these parasites evolved from their hosts. But these conclusions have been criticized because the morphological features shared by parasite and host may be the result of convergent evolution. In this study, we examine the hypothesis, originally put forth by Setchell, that adelphoparasitic red algae, that is, parasitic red algae that are morphologically very similar to their hosts, evolved from their specific red algal hosts. Rather than comparing morphological features of parasites and hosts, small-subunit 18S nuclear ribosomal DNA and the internal transcribed spacer regions (ITSs) of the nuclear ribosomal repeat are compared for five parasites, their hosts, and related nonhosts from four red algal orders. These comparisons reveal that each of these adelphoparasites has evolved either directly from the host on which it is currently found, or it evolved from some other taxon that is closely related to the modern host. The parasites Gardneriella tuberifera, Rhodymeniocolax botryoides, and probably Gracilariophila oryzoides evolved from their respective hosts Sarcodiotheca gaudichaudii, Rhodymenia pacifica, and Gracilariopsis lemaneiformis, respectively. The parasite Faucheocolax attenuata evolved from either Fauchea laciniata or Fauchea fryeana and subsequently radiated onto the other host species. Presently this parasite is found on both hosts. Lastly, some parasitic genera such as Plocamiocolax are polyphyletic in their origins. A species of Plocamiocolax from an Antarctic Plocamium cartilagineum appears to have evolved from its host whereas the common Plocamiocolax pulvinata that occurs along the west coast of North America likely evolved from Plocamium violaceum and radiated secondarily onto its present day host, Plocamium cartilagineum.  相似文献   

8.
Plant viruses typically have highly condensed genomes, yet the plant-pathogenic viruses Cassava brown streak virus, Ugandan cassava brown streak virus, and Euphorbia ringspot virus are unusual in encoding an enzyme not yet found in any other virus, the “house-cleaning” enzyme inosine triphosphatase. Inosine triphosphatases (ITPases) are highly conserved enzymes that occur in all kingdoms of life and perform a house-cleaning function by hydrolysing the noncanonical nucleotide inosine triphosphate to inosine monophosphate. The ITPases encoded by cassava brown streak virus and Ugandan cassava brown streak virus have been characterized biochemically and are shown to have typical ITPase activity. However, their biological role in virus infection has yet to be elucidated. Here we review what is known of viral-encoded ITPases and speculate on potential roles in infection with the aim of generating a greater understanding of cassava brown streak viruses, a group of the world's most devastating viruses.  相似文献   

9.
Henipaviruses: Gaps in the Knowledge of Emergence   总被引:1,自引:0,他引:1  
Over the past 10 years many new viruses have been identified in Australia and the Asian region. The viruses have been isolated from, and/or identified in, a range of animals; some of these viruses are of veterinary and medical importance while others are new threats to biodiversity. Of these viruses, Hendra and Nipah viruses have emerged as significant zoonotic agents belonging to the family Paramyxoviridae and genus Henipavirus. These agents cause fatalities in a range of animals including horses, pigs, and humans. Both viruses have been isolated from flying foxes (genus Pteropus; suborder Megachiroptera), which are accepted as their natural hosts. Although some research has been undertaken on the viruses and their hosts, little is known about how these viruses emerge. We have attempted to investigate the current knowledge of the bat-Henipavirus ecology by discussing the range of bat viruses that exist (viral assemblage), the significance of evolving viruses, possible functional role(s) of viruses, the ecology of viruses and their hosts, and identifying possible drivers (selection pressures) that may culminate with the overlap of new potential viral hosts thereby facilitating the replication of fit viral populations in a new host–virus continuum(s). By undertaking such an analysis, we have attempted to identify key questions, which should be investigated if the factors involved in driving Henipavirus emergence are to be understood.  相似文献   

10.

Acanthamoeba castellanii, known as the “Trojan horse of the microbial world,” is known to host a variety of microorganisms including viruses, yeasts, protists, and bacteria. Acanthamoeba can act as a vector and may aid in the transmission of various bacterial pathogens to potential hosts and are found in a variety of places, thus impacting the health of humans, animals, and the environment. These are interconnected in a system known as “one health.” With the global threat of antibiotic resistance, bacteria may avoid harsh conditions, antibiotics, and disinfectants by sheltering within Acanthamoeba. In this study, Acanthamoeba castellanii interaction with Morganella morganii, a Gram-negative bacterium was studied. Escherichia coli K1 interaction with Acanthamoeba was carried out as a control. Association, invasion, and survival assays were accomplished. Morganella morganii was found to associate, invade, and survive within Acanthamoeba castellanii. Additionally, Escherichia coli K1 was also found to associate, invade, and survive within the Acanthamoeba at a higher number in comparison to Morganella morganii. For the first time, we have shown that Morganella morganii interact, invade, and survive within Acanthamoeba castellanii, suggesting that Acanthamoeba may be a potential vector in the transmission of Morganella morganii to susceptible hosts. Taking a one health approach to tackle and develop disinfectants to target Acanthamoeba is warranted, as the amoebae may be hosting various microbes such as multiple drug-resistant bacteria and even viruses such as the novel coronavirus.

  相似文献   

11.
Herbivores generally benefit from increased plant nitrogen content, because the nitrogen content of animals is much higher than that of plants. Consequently, high plant nitrogen alleviates the profound stoichiometric imbalance that herbivores face in their diets. Parasitic plants provide the opportunity to test this generalization for consumers across kingdoms. We fertilized two microhabitats in a California salt marsh that were dominated by Salicornia virginica or a mixture of S. virginica and Jaumea carnosa. The nitrogen content of both host plants and of the holoparasite Cuscuta salina (dodder) increased in fertilized plots in both microhabitats. Cuscuta preferred to attack Jaumea, although Jaumea had lower nitrogen content than Salicornia. When host nitrogen content was altered by fertilizing plots, however, the percent cover of the parasite doubled. Although parasitic plants and their hosts have similar tissue nitrogen contents, suggesting no stoichiometric imbalance between host and consumer, parasitic plants do not feed on host tissue, but on host xylem and phloem, which are very low in nitrogen. Consequently, parasitic plants face the same dietary stoichiometric constraints as do herbivores, and both herbivores and holoparasitic plants may respond positively to increases in host nitrogen status.  相似文献   

12.
Culicoides (Diptera: Ceratopogonidae) are vectors of pathogens that affect wildlife, livestock and, occasionally, humans. Culicoides imicola (Kieffer, 1913) is considered to be the main vector of the pathogens that cause bluetongue disease (BT) and African horse sickness (AHS) in southern Europe. The study of blood‐feeding patterns in Culicoides is an essential step towards understanding the epidemiology of these pathogens. Molecular tools that increase the accuracy and sensitivity of traditional methods have been developed to identify the hosts of potential insect vectors. However, to the present group's knowledge, molecular studies that identify the hosts of C. imicola in Europe are lacking. The present study genetically characterizes the barcoding region of C. imicola trapped on farms in southern Spain and identifies its vertebrate hosts in the area. The report also reviews available information on the blood‐feeding patterns of C. imicola worldwide. Culicoides imicola from Spain feed on blood of six mammals that include species known to be hosts of the BT and AHS viruses. This study provides evidence of the importance of livestock as sources of bloodmeals for C. imicola and the relevance of this species in the transmission of BT and AHS viruses in Europe.  相似文献   

13.
Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread. However, even for reproductive parasites it can pay to enhance host fitness. Indeed, there is a recent upsurge of reports on Wolbachia‐associated fitness benefits. Therefore, the question arises how such instances of mutualism are related to the phenotypes of reproductive parasitism. Here, we review the evidence of Wolbachia mutualisms in arthropods, including both facultative and obligate relationships, and critically assess their biological relevance. Although many studies report anti‐pathogenic effects of Wolbachia, few actually prove these effects to be relevant to field conditions. We further show that Wolbachia frequently have beneficial and detrimental effects at the same time, and that reproductive manipulations and obligate mutualisms may share common mechanisms. These findings undermine the idea of a clear‐cut distinction between Wolbachia mutualism and parasitism. In general, both facultative and obligate mutualisms can have a strong, and sometimes unforeseen, impact on the ecology and evolution of Wolbachia and their arthropod hosts. Acknowledging this mutualistic potential might be the key to a better understanding of some unresolved issues in the study of Wolbachia–host interactions.  相似文献   

14.
The sudden appearance of diseases like SARS (severe acute respiratory syndrome 1 ), the devastating impacts of diseases like Ebola on both human and wildlife communities, 2 , 3 and the immense social and economic costs created by viruses like HIV 4 underscore our need to understand the ecology of infectious diseases. Given that monkeys and apes often share parasites with humans, understanding the ecology of infectious diseases in nonhuman primates is of paramount importance. This is well illustrated by the HIV viruses, the causative agents of human AIDS, which evolved recently from related viruses of chimpanzees (Pan troglodytes) and sooty mangabeys (Cercocebus atys 5 ), as well as by the outbreaks of Ebola virus, which trace their origins to zoonotic transmissions from local apes. 6 A consideration of how environmental change may promote contact between humans and nonhuman primates and thus increase the possibility of sharing infectious diseases detrimental to humans or nonhuman primates is now paramount in conservation and human health planning.  相似文献   

15.
On the basis of preliminary experiments, some Crotalaria species from Senegal were investigated to determine (1) their susceptibility to Meloidogyne javanica and M. incognita compared to a sensitive host (tomato), (2) their mycorrhizal and rhizobial responses, and (3) the effect of their cultivation on the mycorrhizal soil infectivity. The nematode invasion rates on Crotalaria spp. ranked from 0.17 to 7.17% and from 0.58 to 5.25%, respectively, for M. incognita and M. javanica, vs. 97% and 77% on tomato. Moreover, the inoculated J2 which invaded tomatoes developed into adult females, while those on Crotalaria spp. rarely developed beyond the third stage, confirming that all Crotalaria spp. evaluated are non hosts or poor hosts. In two other experiments, Crotalaria spp. were inoculated with an arbuscular mycorrhizal fungus (Glomus intraradices). Mycorrhization was generally well developed among Crotalaria species, and mycorrhizal colonization enhanced mainly phosphorus content of shoot tissues and always significant plant growth. Inoculation with both rhizobial isolates and Glomus intraradices enhanced growth and nodule formation on some Crotalaria species. The data recorded in both experiments showed, for the first time, that Crotalaria spp. are highly mycorrhiza dependent, some of them reaching more than 90% mycorrhizal dependency. Among Crotalaria species, twelve were used in two different experiments. A significant correlation was obtained between their mycorrhizal dependencies calculated on the shoot dry mass recorded in each experiment. Crotalaria spp. could be used as pre-crops for providing green manure while at the same time decreasing the level of detrimental nematodes and increasing the level of beneficial mycorrhizal fungi.  相似文献   

16.
新疆两种土地利用方式下土壤病毒的群落组成与功能特征   总被引:2,自引:0,他引:2  
病毒作为食物网的重要组成部分,在生态系统中发挥着重要的功能。病毒能够影响宿主的死亡率、群落结构和进化,以及营养元素循环。但由于技术方法的限制,对土壤病毒的群落组成和功能特征还知之甚少。为探索不同土地利用方式下土壤病毒组特征,采集了新疆棉花地和荒漠土壤样品。通过宏病毒组学分析发现,棉花地土壤和荒漠土壤分别注释到20个和15个病毒科,单链DNA(ssDNA)病毒占优势,其中微小噬菌体科(Microviridae)占比最高。仅在棉花地土壤中检测到花椰菜花叶病毒科(Caulimoviridae)、逆转录病毒科(Retroviridae)、裸露病毒科(Nudiviridae)、多分DNA病毒科(Polydnaviridae)、杆状病毒科(Baculoviridae)和囊泡病毒科(Ascoviridae),其中大部分病毒属于植物病毒和昆虫病毒。本研究推测与土地利用方式相关的人为活动、土壤理化性质以及动植物的差异可能影响土壤病毒的群落组成。通过Virsorter共注释到1824条病毒contigs,主要为微小噬菌体科。进一步利用SEED数据库对病毒功能进行注释,发现两个土壤病毒组注释到的主要功能类似;在SEED level 2水平上,均以"Phage capsid proteins"和"Phage packaging machinery"占比最高。本研究可为进一步探索土壤病毒生态功能和土壤食物网提供数据支持。  相似文献   

17.
Most emerging pathogens of humans can infect multiple host species (Woolhouse & Gowtage‐Sequeria, 2005). This simple fact has motivated multiple large‐scale, comparative analyses of the drivers of pathogen sharing and zoonotic pathogen richness among hosts as well as the factors determining the zoonotic potential of pathogens themselves. However, most of this work focuses on viruses, limiting a broader understanding of how host range varies within and between pathogen groups. In this issue of Molecular Ecology, Shaw et al. (2020) compile a comprehensive data set of host–pathogen associations across viruses and bacteria and test whether previous patterns observed in the former occur in the latter. They find most viruses and bacteria are specialists, and viruses are more likely to be generalists; however, generalist bacteria encompass multiple host orders, whereas viral sharing occurs more within host orders. Lastly, the authors demonstrate that many factors previously identified as predictors of zoonotic richness for viruses occur for bacteria and that host phylogenetic similarity is a primary determinant of cross‐species transmission. However, pathogen sharing with humans was more common and more weakly related to phylogenetic distance to Homo sapiens for bacteria compared to viruses, suggesting the former could pose greater spillover risks across host orders. This work represents a key advance in our understanding of host specificity and pathogen sharing beyond viruses.  相似文献   

18.
Tuomas Aivelo  Barbara Tschirren 《Ibis》2020,162(3):1088-1092
Experimental field studies have demonstrated negative fitness consequences of Hen Flea Ceratophyllus gallinae infestations for bird hosts, yet it is currently unclear whether these negative effects are a direct consequence of flea-induced blood loss or a result of flea-borne pathogen transmission. Here we used a 16S rRNA gene sequencing approach to characterize the bacterial microbiota community of Hen Fleas collected from Great Tit Parus major nests and found that Brevibacterium (Actinobacteria), Staphylococcus (Firmicutes), Stenotrophomonas (Proteobacteria), Massilia (Proteobacteria), as well as the arthropod endosymbionts ‘Candidatus Lariskella’ and ‘Candidatus Midichloria’ were most abundant. We found evidence for the occurrence of Staphylococcus spp. in Hen Fleas, which may cause opportunistic infections in bird hosts, but not of other known pathogens commonly transmitted by other flea species, such as Bartonella spp. or Rickettsia spp. However, Hen Fleas might transmit other pathogens (e.g. viruses or bacteria that are not currently recognized as bird pathogens), which may contribute to the negative fitness consequences of Hen Flea infestations in addition to direct blood loss or secondary infections of wounds caused by biting fleas.  相似文献   

19.
  • 1 Cross-mating of various populations of Pyemotes obtained from laboratory insect cultures demonstrated that the straw itch mite is a single, widely dispersed species, different from P.ventricosus, which was probably associated with the furniture beetle.
  • 2 P.ventricosus should not be the approved scientific name for the straw itch mite. The correct name for the straw itch mite is Pyemotes tritici.
  • 3 Various Pyemotes species differ in preferred habitats, hosts, and toxicity to man. Whereas P.tritici commonly attacks grain insects and is highly toxic to man, other species attack wood boring insects and may cause little or no irritation. P.scolyti and P.parviscolyti, which attack bark beetles, cause no observable symptoms.
  • 4 It is suggested that before Pyemotes are used as biological control agents against bark beetles, it is important to identify the species correctly.
  相似文献   

20.
Host–symbiont relationships are ubiquitous in nature, yet evolutionary and ecological processes that shape these intricate associations are often poorly understood. All orders of birds engage in symbioses with feather mites, which are ectosymbiotic arthropods that spend their entire life on hosts. Due to their permanent obligatory association with hosts, limited dispersal and primarily vertical transmission, we hypothesized that the cospeciation between feather mites and hosts within one avian family (Parulidae) would be perfect (strict cospeciation). We assessed cophylogenetic patterns and tested for congruence between species in two confamiliar feather mite genera (Proctophyllodidae: Proctophyllodes, Amerodectes) found on 13 species of migratory warblers (and one other closely related migratory species) in the eastern United States. Based on COI sequence data, we found three Proctophyllodes lineages and six Amerodectes lineages. Distance‐ and event‐based cophylogenetic analyses suggested different cophylogenetic trajectories of the two mite genera, and although some associations were significant, there was little overall evidence supporting strict cospeciation. Host switching is likely responsible for incongruent phylogenies. In one case, we documented prairie warblers Setophaga discolor harboring two mite species of the same genus. Most interestingly, we found strong evidence that host ecology may influence the likelihood of host switching occurring. For example, we documented relatively distantly related ground‐nesting hosts (ovenbird Seiurus aurocapilla and Kentucky warbler Geothlypis formosa) sharing a single mite species, while other birds are shrub/canopy or cavity nesters. Overall, our results suggest that cospeciation is not the case for feather mites and parulid hosts at this fine phylogenetic scale, and raise the question if cospeciation applies for other symbiotic systems involving hosts that have complex life histories. We also provide preliminary evidence that incorporating host ecological traits into cophylogenetic analyses may be useful for understanding how symbiotic systems have evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号