首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
In the past decade, data from numerous epidemiological studies have indicated strong inverse associations between birth weight and risk of coronary heart disease, hypertension, type 2-diabetes, and other diseases in adulthood. The "Barker hypothesis" thus postulates that a number of organ structures and functions undergo programming during embryonic and fetal life. This developmental programming determines the set points of physiological and metabolic responses in adult life. Alterations of nutrient availability during gestation may lead to developmental adaptations, via hormonal maneuvers by the embryo and fetus that readjust these set points. These adaptive measures have short-term benefits to the embryo and fetus, so that the newborn will be better prepared for the adverse environment (e.g., undernutrition). However, adequate nutritional support during postnatal life that enables catch-up growth may create metabolic conflicts that predispose the adult to aberrant physiological functions and, ultimately, increased risk of disease. It is plausible that other adverse in utero conditions, including exposure to developmental toxicants, may similarly alter adult disease susceptibility. This article provides an overview of the Barker hypothesis, its supporting evidence, the current advances in understanding the biological mechanisms underlying this phenomenon, and its implications for developmental toxicology.  相似文献   

2.
The concept of the foetal/developmental origins of adult disease has been around for ~20 years and from the original epidemiological studies in human populations much more evidence has accumulated from the many studies in animal models. The majority of these have focused upon the role of early dietary intake before conception, through gestation and/or lactation and subsequent interactions with the postnatal environment, e.g. dietary and physical activity exposures. Whilst a number of theoretical models have been proposed to place the experimental data into a biological context, the underlying phenomena remain the same; developmental deficits (of single (micro) nutrients) during critical or sensitive periods of tissue growth alter the developmental pathway to ultimately constrain later functional capacity when the individual is adult. Ageing, without exception, exacerbates any programmed sequelae. Thus, adult phenotypes that have been relatively easy to characterise (e.g. blood pressure, insulin sensitivity, body fat mass) have received most attention in the literature. To date, relatively few studies have considered the effect of differential early environmental exposures on reproductive function and fecundity in predominantly mono-ovular species such as the sheep, cow and human. The available evidence suggests that prenatal insults, undernutrition for example, have little effect on lifetime reproductive capacity despite subtle effects on the hypothalamic-pituitary-gonadal axis and gonadal progenitor cell complement. The postnatal environment is clearly important, however, since neonatal/adolescent growth acceleration (itself not independent from prenatal experience) has been shown to significantly influence fecundity in farm animals. The present paper will expand these interesting areas of investigation and review the available evidence regarding developmental programming of reproduction and fertility. However, it appears there is little strong evidence to indicate that offspring fertility and reproductive senescence in the human and in farm animal species are overtly affected by prenatal nutrient exposure. Nevertheless, it is clear that the developing gonad is sensitive to its immediate environment but more detailed investigation is required to specifically test the long-term consequences of nutritional perturbations during pregnancy on adult reproductive well-being.  相似文献   

3.
Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human‐relevant mechanistic data on the many tissue‐level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development  相似文献   

4.
Numerous epidemiological studies suggest an inverse relationship between low birth weight (LBW) and hypertension, an observation now supported by numerous animal studies. The mechanisms linking LBW and hypertension appear to be multifactorial and involve alterations in the normal regulatory systems and renal functions involved in the long-term control of arterial pressure. Recent studies using animal models of fetal programming suggest that programming during fetal life occurs in response to an adverse fetal environment and results in permanent adaptive responses that lead to structural and physiological alterations and the subsequent development of hypertension. This review summarizes the adaptive responses observed in the different models used to induce a suboptimal fetal environment and discusses insights into the mechanisms mediating the fetal programming of hypertension.  相似文献   

5.
A substantial number of epidemiological studies have shown that small size at birth is associated with an increased risk of developing hypertension and metabolic dysfunction later in life; however these associations have not been found in all studies. In animals, several models have been used to investigate the effects of perturbations to the fetal environment on later arterial pressure, with differing effects on size at birth and arterial pressure. Ovine models include maternal dietary manipulations, antenatal glucocorticoid exposure, and restriction of placental size and function. In our laboratory, we have induced late gestational placental insufficiency and growth restriction in sheep by umbilico-placental embolisation; during the early postnatal period the growth restricted lambs remained small and were hypotensive relative to controls. More recent long-term studies indicate that these growth restricted animals were able to catch up in body weight within the first postnatal year; however, their arterial pressure remained lower than that of controls throughout the first 2 postnatal years (deltaMAP, -4.2 +/- 1.4 mmHg). This relative hypotension may be due to altered vascular or cardiac development resulting from increased vascular resistance or nutrient restriction during fetal life. As late gestational placental insufficiency led to a persistent reduction in arterial pressure from birth to adulthood, our findings do not support the hypothesis that restricted fetal growth per se leads to hypertension after birth. It is likely that the effects of a prenatal compromise on postnatal arterial pressure will vary depending on the nature of the associated developmental perturbations and their gestational timing.  相似文献   

6.
Programming of the endocrine pancreas by the early nutritional environment   总被引:2,自引:0,他引:2  
A substantial body of evidence now suggests that poor intrauterine milieu elicited by maternal nutritional disturbance or placental insufficiency may programme susceptibility in the foetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. Further data showing the developmental programming of the metabolic syndrome are now available thanks to animal studies in which the foetal environment has been manipulated. This review examines the developmental programming of glucose intolerance by disturbed intrauterine metabolic condition in rats. It focuses on the alteration of the endocrine pancreas at birth. Long-term consequences, deterioration of glucose tolerance and even transgenerational effects are reported. Maternal protein, caloric restriction and diabetes during gestation/lactation lead to altered beta-cell mass. This review also tempts to identify cellular and molecular mechanisms involved in this process.  相似文献   

7.
There is evidence to suggest that an individual's susceptibility to cardiovascular disease cannot be entirely explained by differences in life style factors (i.e., low physical activity, high fat/salt diet), or genetic causes, but may also be influenced by factors encountered during intrauterine life. Epidemiological studies found the link between low birth weight for gestational age (a broad index of sub-optimal intrauterine environment) and increased incidence of cardiovascular and metabolic diseases in adulthood. Many animal models in which the intrauterine environment was altered during early/late or throughout gestation demonstrated long-term effects on adult health. In general stress in early gestation is more likely to be associated with adult cardiovascular disease including hypertension, whereas late gestation stress may also be associated with adult hypotension in addition to metabolic/endocrine abnormalities. Two systems have been widely hypothesised to serve as mechanisms via which adverse prenatal influences impinge on adult cardiovascular and metabolic disease; hippocampal-hypothalamo-pituitary-adrenal axis (HHPA) and renin-angiotensin system (RAS). Interestingly, at least in our animal model of adult hypertension after brief/early prenatal glucocorticoid exposure, HHPA axis is not altered when studied either in late gestation or at several stages during adulthood. However, our more recent results, using the same animal model, suggest a major role for the central and renal RAS. This review will mainly focus on animal models and potential mechanisms via which a perturbed intrauterine environment (undernutrition or steroid exposure) lead to adult cardiovascular and/or metabolic disease.  相似文献   

8.
The incidence of asthma, a complex disease and significant public health problem, has been increasing over the last 30 years for unknown reasons. Changes in environmental exposures or lifestyle may be involved. In some cases asthma may originate in utero or in early life. Associations have been found between in utero exposures to several xenobiotics and increased risk of asthma. There is convincing evidence that maternal smoking and/or in utero and perinatal exposure to environmental tobacco smoke are associated with increased risk of asthma. Similar effects have been demonstrated in animal models of allergic asthma. Evidence also suggests that in utero and/or early‐life exposures to various ambient air pollutants may increase the risk of asthma although supporting animal data are very limited. A few studies have suggested that in utero exposure to acetaminophen is associated with increased risk of asthma; however, animal data are lacking. Various vitamin deficiencies and supplements during pregnancy have been studied. In general, it appears that vitamins A, C, and E have protective effects and vitamins D and B may, in some instances, increase the risk, but the data are not conclusive. Some studies related to in utero exposures to polychlorinated biphenyls and bisphenol A and asthma risk are also reported. The underlying mechanisms for an association between xenobiotic exposures and asthma remain a matter of speculation. Genetic predisposition and epigenetic changes have been explored. The developing immune, respiratory, and nervous systems are potential targets. Oxidative stress and modulation of inflammation are thought to be involved. Birth Defects Research (Part C) 99:1–13, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The early-life environment, in particular maternal diet during pregnancy, influences a wide range of organs and systems in adult offspring. Mounting evidence suggests that developmental programming can also influence health and disease in grand-offspring. Transgenerational effects can be defined as those persisting into an F2 generation, where the F0 mother experiences suboptimal diet during her pregnancy. In this review, we critically examine evidence for transgenerational developmental programming effects in human populations, focusing on metabolic and reproductive outcomes. We discuss evidence from historical cohorts suggesting that grandchildren of women exposed to famine and other dietary alterations during pregnancy may experience increased rates of later health complications than their control counterparts. The methodological difficulties with transgenerational studies in human cohorts are explored. In particular, the problems with assessing reproductive outcomes in human populations are discussed. In light of the relative paucity of evidence available from human cohorts, we consider key insights from transgenerational experimental animal models of developmental programming by maternal diet; data are drawn from a range of rodent models, as well as the guinea-pig and the sheep. The evidence for different potential mechanisms of transgenerational inheritance or re-propagation of developmental programming effects is evaluated. Transgenerational effects could be transmitted through methylation of the gametes via the paternal and maternal lineage, as well as other possible mechanisms via the maternal lineage. Finally, future directions for exploring these underlying mechanisms further are proposed, including utilizing large, well-characterized, prospective pregnancy cohorts that include biobanks, which have been established in various populations during the last few decades.  相似文献   

10.
This article is part of a Special Issue “SBN 2014”.Obesity in women of child-bearing age is a growing problem in developed and developing countries. Evidence from human studies indicates that maternal BMI correlates with offspring adiposity from an early age and predisposes to metabolic disease in later life. Thus the early life environment is an attractive target for intervention to improve public health. Animal models have been used to investigate the specific physiological outcomes and mechanisms of developmental programming that result from exposure to maternal obesity in utero. From this research, targeted intervention strategies can be designed. In this review we summarise recent progress in this field, with a focus on cardiometabolic disease and central control of appetite and behaviour. We highlight key factors that may mediate programming by maternal obesity, including leptin, insulin, and ghrelin. Finally, we explore potential lifestyle and pharmacological interventions in humans and the current state of evidence from animal models.  相似文献   

11.
Roy A  Bauer SM  Lawrence BP 《PloS one》2012,7(6):e38448
Bisphenol A (BPA) is used in numerous products, such as plastic bottles and food containers, from which it frequently leaches out and is consumed by humans. There is a growing public concern that BPA exposure may pose a significant threat to human health. Moreover, due to the widespread and constant nature of BPA exposure, not only adults but fetuses and neonates are also exposed to BPA. There is mounting evidence that developmental exposures to chemicals from our environment, including BPA, contribute to diseases late in life; yet, studies of how early life exposures specifically alter the immune system are limited. Herein we report an examination of how maternal exposure to a low, environmentally relevant dose of BPA affects the immune response to infection with influenza A virus. We exposed female mice during pregnancy and through lactation to the oral reference dose for BPA listed by the US Environmental Protection Agency, and comprehensively examined immune parameters directly linked to disease outcomes in adult offspring following infection with influenza A virus. We found that developmental exposure to BPA did not compromise disease-specific adaptive immunity against virus infection, or reduce the host's ability to clear the virus from the infected lung. However, maternal exposure to BPA transiently reduced the extent of infection-associated pulmonary inflammation and anti-viral gene expression in lung tissue. From these observations, we conclude that maternal exposure to BPA slightly modulates innate immunity in adult offspring, but does not impair the anti-viral adaptive immune response, which is critical for virus clearance and survival following influenza virus infection.  相似文献   

12.
Background: Numerous clinical and experimental studies support the hypothesis that the intrauterine environment is an important determinant of cardiovascular disease and hypertension.Objective: This review examined the mechanisms linking an adverse fetal environment and increased risk for chronic disease in adulthood with an emphasis on gender differences and the role of sex hormones in mediating sexual dimorphism in response to a suboptimal fetal environment.Methods: This review focuses on current findings from the PubMed database regarding animal models of fetal programming of hypertension, sex differences in phenotypic outcomes, and potential mechanisms in offspring of mothers exposed to an adverse insult during gestation. For the years 1988 to 2007, the database was searched using the following terms: fetal programming, intrauterine growth restriction, low birth weight, sex differences, estradiol, testosterone, high blood pressure, and hypertension.Results: The mechanisms involved in the fetal programming of adult disease are multifactorial and include alterations in the regulatory systems affecting the long-tterm control of arterial pressure. Sex differences have been observed in animal models of fetal programming, and recent studies suggest that sex hormones may modulate activity of regulatory systems, leading to a lower incidence of hypertension and vascular dysfunction in females compared with males.Conclusions: Animal models of fetal programming provide critical support for the inverse relationship between birth weight and blood pressure. Experimental models demonstrate that sex differences are observed in the pathophysiologic response to an adverse fetal environment. A role for sex hormone involvement is strongly suggested,with modulation of the renin-angiotensin system as a possible mechanism.  相似文献   

13.
Role of developmental exposure to environmental agents in altering the disease process is well known. Exposure to chemical agents at critical periods of development may cause some permanent changes in the functioning of various vital systems including the nervous system in the organisms. It is not surprising to see an extensive response due to exposure to chemical agents early in life as the organ systems are more vulnerable to chemical insults during developmental stages. In some cases the response to low level environmental insults may not be obvious until adult or old age. Results from several studies have shown such latency in response to the nervous system leading to neurodegeneration in old age. Studies conducted in murine and primate models provided ample evidence for the association of developmental exposure to low levels of heavy metal lead (Pb) and Alzheimer's disease-like pathology during senescence. It is not clear about the reasons behind such response; however, the contribution of epigenetic mechanisms could explain the role of early events in life in inducing the late life abnormalities of nervous system. It is possible that environmental agents epigenetically modulate the gene regulation to persist the response silent for a long period of time and to result pathological outcomes significantly later in life. This article will summarize the association of early life exposure to environmental agents and late-life abnormalities with an emphasis on developmental exposure to Pb and neurodegeneration in old age.  相似文献   

14.
Obesity during pregnancy programs adult-onset heart disease in the offspring. Clinical studies indicate that exposure to an adverse environment in utero during early, as compared to late, gestation leads to a higher prevalence of adult-onset heart disease. This suggests that the early developing heart is particularly sensitive to an adverse environment. Accordingly, growing evidence from clinical studies and animal models demonstrates that obesity during pregnancy alters the function of the fetal heart, programming a higher risk of cardiovascular disease later in life. Moreover, gene expression patterns and signaling pathways that promote initiation and progression of cardiovascular disease are altered in the hearts in offspring born to obese mothers. However, the mechanisms mediating the long-term effects of an adverse environment in utero on the developing heart leading to adult-onset disease are not clear. Here, we review clinical and experimental evidence documenting the effects of maternal obesity during pregnancy on the fetal and post-natal heart and emphasize on the potential mechanisms of disease programming.  相似文献   

15.
Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has long been suspected of causing adverse reproductive and developmental effects, but previous reviews were inconclusive, due in part, to limitations in the design of many of the human population studies. In the current review, we systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects, in human populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective human studies provided evidence of an association of maternal exposure with adverse reproductive and developmental effects. Further assessment of this association by meta-analysis revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20-2.59, p=0.002) and of all adverse pregnancy outcomes combined (1.54, 95% CI 1.27-1.88, p<0.001), in formaldehyde-exposed women, although differential recall, selection bias, or confounding cannot be ruled out. Evaluation of the animal studies including all routes of exposure, doses and dosing regimens studied, suggested positive associations between formaldehyde exposure and reproductive toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic and epigenomic effects (such as DNA methylation), were identified. To clarify these associations, well-designed molecular epidemiologic studies, that include quantitative exposure assessment and diminish confounding factors, should examine both reproductive and developmental outcomes associated with exposure in males and females. Together with mechanistic and animal studies, this will allow us to better understand the systemic effect of formaldehyde exposure.  相似文献   

16.
There exist numerous experimental and epidemiological data indicating that malnutrition in early development may influence the risk of developing metabolic disorders in adult life, including type 2 diabetes mellitus (T2DM). Epidemiological evidence for such a relationship was mostly obtained in quasi-experimental studies (natural experiments) carried out on the populations of different countries. These studies revealed that exposure to famine in prenatal and/or early postnatal development is associated with increased risk of developing type 2 diabetes in adult life. Epigenetic regulation of gene activity is considered to be the main mechanism linking starvation in early life and increased risk of type 2 diabetes in adulthood. It is believed that exposure to famine during pregnancy may induce persistent epigenetic variations that are thought to have some adaptive value in the early postnatal development but that also lay grounds for metabolic disorders, including type 2 diabetes, in later life. The present review consolidates and discusses the data indicating the possibility of early developmental programming of type 2 diabetes obtained in the course of quasi-experimental studies.  相似文献   

17.
Epidemiological studies have revealed strong and internationally reproducible links between early growth restriction and subsequent risk of developing type 2 diabetes and the metabolic syndrome (glucose intolerance, hypertension and hypertriglyceridaemia). This effect can exist independently of genetic factors. There is also direct evidence that poor maternal nutrition and maternal smoking cause both a reduction in birthweight and subsequent loss of glucose tolerance. High rates of growth in childhood may add to these effects. The 'thrifty phenotype' hypothesis attempts to explain these associations in terms of an altered programming of growth and metabolism that aids survival both pre- and postnatally. Type 2 diabetes is envisaged as a consequence of a clash of this programming with adult obesity. Tests of this hypothesis in animal models have shown that both the metabolic syndrome and type 2 diabetes can result from early growth restriction in rats consequent upon rat dams being fed a reduced protein, isocaloric diet (in which the protein is replaced by an equal quantity of nonprotein energy). A variety of other models of early growth restriction in rats lead to a similar phenotype. Several structural and gene expression changes have been shown in many tissues, including pancreas, liver, kidney, muscle and adipose tissue. Changes in gene expression include those concerned with hormone receptors, signalling and glycolytic enzymes. Many important questions remain for future research.  相似文献   

18.
Rogers LK  Velten M 《Life sciences》2011,89(13-14):417-421
The "fetal origin of adult disease Hypothesis" originally described by Barker et al. identified the relationship between impaired in utero growth and adult cardiovascular disease risk and death. Since then, numerous clinical and experimental studies have confirmed that early developmental influences can lead to cardiovascular, pulmonary, metabolic, and psychological diseases during adulthood with and without alterations in birth weight. This so called "fetal programming" includes developmental disruption, immediate adaptation, or predictive adaptation and can lead to epigenetic changes affecting a specific organ or overall health. The intrauterine environment is dramatically impacted by the overall maternal health. Both premature birth or low birth weight can result from a variety of maternal conditions including undernutrition or dysnutrition, metabolic diseases, chronic maternal stresses induced by infections and inflammation, as well as hypercholesterolemia and smoking. Numerous animal studies have supported the importance of both maternal health and maternal environment on the long term outcomes of the offspring. With increasing rates of obesity and diabetes and survival of preterm infants born at early gestational ages, the need to elucidate mechanisms responsible for programming of adult cardiovascular disease is essential for the treatment of upcoming generations.  相似文献   

19.
Radiation effects on development   总被引:2,自引:0,他引:2  
It has been widely reported that prenatal exposure to ionizing radiation can interfere with embryonic and fetal development, depending on dose and gestational age in which exposure occurs. According to several studies on animal models, different well-defined stages during prenatal life can be distinguished in relation to teratogenic effects. During the preimplantation stage, elevated doses of radiation can result in abortion, while lower doses may produce genomic damage that is usually repaired. On the other hand, during the organogenesis stage in mice (embryonic day 6.5 [E6.5] to E13.5), irradiation is associated with increased incidence of malformation and intrauterine growth restriction (IUGR). Later exposure is linked to brain damage. Doses used in animal studies are generally higher than those used for diagnostic procedures in humans. Usually, radiation exposure to diagnostic range (<0.05 Gy = 5 rads) is not associated with an increased risk of congenital anomalies. In human studies, elevated doses produce adverse outcomes, depending on stage of development, as in animal studies. Blastogenesis (up to two weeks) is associated with failure to implant or no significant health effects. An increased risk of malformation and growth retardation can be observed for two to seven weeks exposure (organogenesis stage), while exposure at later stages (fetogenesis) is mainly associated with brain damage. In this review we focus on the relevance of estimating the cumulative dose of radiation to the fetus and the gestational age in which exposure occurs, to provide appropriate counseling to pregnant women.  相似文献   

20.
All chemical forms of Hg can affect neurodevelopment; however, low levels of organic Hg (methylmercury-MeHg and ethylmercury-EtHg in Thimerosal-containing vaccines, hereafter ‘TCV’) exposures during early life (pregnancy and lactation) co-occur with other environmental neurotoxic substances. These neurotoxicants may act in parallel, synergistically, or antagonistically to Hg. Nevertheless, the risks of neurotoxicity associated with multiple neuro-toxicants depend on type, time, combinations of exposure, and environmental and/or genetic-associated factors. Neurological developmental disorders, delays in cognition and behavioral outcomes associated with multiple exposures (which include Hg) may show transient or lasting outcomes depending on constitutional and/or environmental factors that can interact to neutralize, aggravate or attenuate these effects; often these studies are challenging to interpret. During pregnancy and lactation, fish-MeHg exposure is frequently confounded with the opposing effects of neuroactive nutrients (in fish) that lead to positive, negative, or no effects on neurobehavioral tests. In infancy, exposures to acute binary mixtures (TCV- EtHg and Al-adjuvants in infant immunizations) are associated with increased risks of tics and other developmental disorders. Despite the certitude that promulgates single environmental neurotoxicants, empirical comparisons of combined exposures indicate that Hg-related outcome is uneven. Hg in combination with other neurotoxic mixtures may elevate risks of neurotoxicity, but these risks arise in circumstances that are not yet predictable. Therefore, to achieve the goals of the Minamata treaty and to safeguard the health of children, low levels of mercury exposure (in any chemical form) needs to be further reduced whether the source is environmental (air- and food-borne) or iatrogenic (pediatric TCVs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号