首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decomposition of organic hydroperoxides as catalyzed by chloroperoxidase was investigated with electron spin resonance (ESR) spectroscopy. Tertiary peroxyl radicals were directly detected by ESR from incubations of tert-butyl hydroperoxide or cumene hydroperoxide with chloroperoxidase at pH 6.4. Peroxyl, alkoxyl, and carbon-centered free radicals from tertiary hydroperoxide/chloroperoxidase systems were successfully trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide, whereas alkoxyl radicals were not detected in the ethyl hydroperoxide/chloroperoxidase system. The carbon-centered free radicals were further characterized by spin-trapping studies with tert-nitrosobutane. Oxygen evolution measured by a Clark oxygen electrode was detected for all the hydroperoxide/chloroperoxidase systems. The classical peroxidase mechanism is proposed to describe the formation of peroxyl radicals. In the case of tertiary peroxyl radicals, their subsequent self-reactions result in the formation of alkoxyl free radicals and molecular oxygen. beta-Scission and internal hydrogen atom transfer reactions of the alkoxyl free radicals lead to the formation of various carbon-centered free radicals. In the case of the primary ethyl peroxyl radicals, decay through the Russell pathway forms molecular oxygen.  相似文献   

2.
This study was undertaken to investigate the effects of vanadium in the +2, +3, +4, and +5 valence states on superoxide generation, myeloperoxidase (MPO) activity, and hydroxyl radical formation by activated human neutrophils in vitro, using lucigenin-enhanced chemiluminescence (LECL), autoiodination, and electron spin resonance with 5,5-dimethyl-l-pyrroline N-oxide as the spin trap, respectively. At concentrations of up to 25 microM, vanadium, in the four different valence states used, did not affect the LECL responses of neutrophils activated with either the chemoattractant, N-formyl-l-methionyl-l-leucyl-l-phenylalanine (1 microM), or the phorbol ester, phorbol 12-myristate 12-acetate (25 ng/ml). However, exposure to vanadium in the +2, +3, and +4, but not the +5, valence states was accompanied by significant augmentation of hydroxyl radical formation by activated neutrophils and attenuation of MPO-mediated iodination. With respect to hydroxyl radical formation, similar effects were observed using cell-free systems containing either hydrogen peroxide (100 microM) or xanthine/xanthine oxidase together with vanadium (+2, +3, +4), while the activity of purified MPO was inhibited by the metal in these valence states. These results demonstrate that vanadium in the +2, +3, and +4 valence states interacts prooxidatively with human neutrophils, competing effectively with MPO for hydrogen peroxide to promote formation of the highly toxic hydroxyl radical.  相似文献   

3.
4.
Prostaglandin (PG) E2 (greater than or equal to 1.6 nM) and PGD2 (greater than or equal to 16 nM) inhibited polymorphonuclear neutrophil (PMN) degranulation responses to leukotriene (LT) B4 and platelet-activating factor (PAF) whereas PGF2 alpha was bioinactive. [3H]PGE2 and [3H]PGD2 bound to PMN and isolated, plasmalemma-enriched PMN membranes. Binding was time-dependent, specific, saturable, and reversible. Competitive studies indicated that the two PGs bound to distinctly different sites. PMN had high (Kd = 1 nM; Rt = 150/cell) and low (Kd = 100 nM; Rt = 5800/cell) affinity PGE2 binding sites. Only a single type of PGD2 binding site (Kd = 13 nM; Rt = 5100/cell) was detected. We conclude that PGE2 and PGD2 bind to their respective, plasmalemmal receptors to attenuate PMN function. The PGs may act as endogenous stop signals to limit the action of concurrently formed excitatory signals, eg., LTB4 and PAF.  相似文献   

5.
Although free radical formation due to the reaction between red blood cells and organic hydroperoxides in vitro has been well documented, the analogous in vivo ESR spectroscopic evidence for free radical formation has yet to be reported. We successfully employed ESR to detect the formation of the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)/hemoglobin thiyl free radical adduct in the blood of rats dosed with DMPO and tert-butyl hydroperoxide, cumene hydroperoxide, ethyl hydrogen peroxide, 2-butanone hydroperoxide, 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid, or hydrogen peroxide. We found that pretreating the rats with either buthionine sulfoximine or diethylmaleate prior to dosing with tert-butyl hydroperoxide decreased the concentration of nonprotein thiols within the red blood cells and significantly enhanced the DMPO/hemoglobin thiyl radical adduct concentration. Finally, we found that pretreating rats with the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea prior to dosing with tert-butyl hydroperoxide enhanced the DMPO/hemoglobin thiyl radical adduct concentration and induced the greatest decrease in nonprotein thiol concentration within the red blood cells.  相似文献   

6.
Using the electron spin resonance/spin trapping system, 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN)/ethanol, hydroxyl radical was detected as the alpha-hydroxyethyl spin trapped adduct of 4-POBN, 4-POBN-CH(CH3)OH, from phorbol 12-myristate 13-acetate-stimulated human neutrophils and monocytes without the addition of supplemental iron. 4-POBN-CH(CH3)OH was stable in the presence of a neutrophil-derived superoxide flux. Hydroxyl radical formation was inhibited by treatment with superoxide dismutase, catalase, and azide. Treatment with a series of transition metal chelators did not appreciably alter 4-POBN-CH(CH3)OH, which suggested that hydroxyl radical generation was mediated by a mechanism independent of the transition metal-catalyzed Haber-Weiss reaction. Kinetic differences between transition metal-dependent and -independent mechanisms of hydroxyl radical generation by stimulated neutrophils were demonstrated by a greater rate of 4-POBN-CH(CH3)-OH accumulation in the presence of supplemental iron. Detection of hydroxyl radical from stimulated monocyte-derived macrophages, which lack myeloperoxidase, required the addition of supplemental iron. The addition of purified myeloperoxidase to an enzymatic superoxide generating system resulted in the detection of hydroxyl radical that was dependent upon the presence of chloride and was inhibited by superoxide dismutase, catalase, and azide. These findings implicated the reaction of hypochlorous acid and superoxide to produce hydroxyl radical. 4-POBN-CH(CH3)OH was not observed upon stimulation of myeloperoxidase-deficient neutrophils, whereas addition of myeloperoxidase to the reaction mixture resulted in the detection of hydroxyl radical. These results support the ability of human neutrophils and monocytes to generate hydroxyl radical through a myeloperoxidase-dependent mechanism.  相似文献   

7.
Phorbol myristate acetate receptors in human polymorphonuclear neutrophils   总被引:6,自引:0,他引:6  
Resting or phorbol myristate acetate (PMA)-pretreated neutrophils were disrupted by nitrogen cavitation and were fractionated on Percoll density gradients to identify the subcellular location of PMA receptors. Receptors were found in the cytoplasm of resting cells; neither primary nor secondary granules bound [3H]PMA, and the few binding sites located in non-granule membrane fractions appeared to reflect cytosolic contamination. Contrastingly, PMA-pretreated cells lost cytosolic receptors; greater than 80% of PMA-binding sites were associated with non-granule membranes. Protein kinase C activity similarly shifted from cytosol to membranes after PMA treatment. Indeed, protein kinase C and PMA receptors co-sedimented on Percoll gradients, co-eluted from Ultragel AcA 44 columns loaded with neutrophil cytoplasm, and were identically influenced by various phospholipids. Finally, PMA, mezerein, diacylglycerol, and dialkylglycerol activated protein kinase C with potencies that paralleled their respective abilities to stimulate neutrophil aggregation responses and inhibit [3H]PMA binding to whole cells or cytosol. These results fit a model of stimulus-response coupling wherein exogenous PMA or endogenous diacylglycerol solvate in cellular membranes. Cytosolic protein kinase C binds to the intramembranous ligand, forming an active, membrane-associated complex that phosphorylates nearby elements involved in triggering aggregation and other responses.  相似文献   

8.
Mediators of tissue damage in human polymorphonuclear neutrophils   总被引:5,自引:0,他引:5  
  相似文献   

9.
Human polymorphonuclear neutrophils (PMNs), purified on Ficoll-Hypaque cushions, were incubated for 5 min with calf skin acid-soluble collagen and the released superoxide anions (O2-) measured spectrophotometrically by reduction of ferricytochrome c or by chemiluminescence analysis. This collagen stimulated the release of O2- unless it had been treated with pepsin. The stimulatory activity remained in denatured collagen, was contained only in the alpha 1(I) chain and was present in the alpha 1(I)-CB 6 (CNBr-cleaved) peptide, which is C-terminal. The activity was linearly dependent on the collagen concentration up to about 200 micrograms/ml. In addition, this collagen induced a release of beta-glucuronidase and N-acetyl-beta-glucosaminidase from PMNs.  相似文献   

10.
A cytochemical method is presented for the demonstration of proteases in human polymorphonuclear (PMN) neutrophils on fixed blood smears. This new technique is based on solubilization of proteases from PMN neutrophils by incubation with 0.25 M NaCl in borate buffer at pH 8.5 which leads to degradation of erythrocytes and plasma in a disclike zone (halo) around centrally situated PMN neutrophils, an effect that is visualized by staining smears using a modified colloidal iron reaction. Halo formation is inhibited by trypsin inhibitors of soya-bean as well as of chicken egg white mucoid and by phenylmethyl-sulfonylfluoride.  相似文献   

11.
Interleukin 1 production by human polymorphonuclear neutrophils   总被引:17,自引:0,他引:17  
The purpose of this study was to determine whether human polymorphonuclear neutrophils (PMN), which share a common cell lineage with macrophages, could produce factors such as IL 1. Other properties which these two cell types share are their phagocytic nature and the common receptor and antigens on their cell surfaces. IL 1, in many of its physical, biochemical, and functional characteristics, is found to resemble endogenous pyrogen (EP). PMN have been cited as a possible cell source of EP, but there have also been reports in which the capacity of PMN to produce EP has been questioned. This study shows that normal human PMN can be stimulated by particulate agents such as zymosan and soluble agents such as phorbol myristic acetate to produce a factor(s) which induces proliferation of mouse thymocytes, i.e., PMN IL 1. This PMN IL 1 was released from PMN in a dose- and time-dependent fashion. PMN IL 1 was nondialyzable, was heat-labile, and was inactivated at pH below 5 and above 8. PMN IL 1 stimulated the proliferation of normal human synovial fibroblasts and caused release of a neutral protease (plasminogen activator) from synovial cells. The synovial and thymocyte-proliferating capacity of PMN IL 1 was not affected by the protease inhibitor aprotinin or by soybean trypsin inhibitor. Gel filtration studies estimate the m.w. of PMN IL 1 to be approximately 13,000 to 17,000.  相似文献   

12.
Recently, the purification of nitric oxide synthase (EC 1.14.23) from rat cerebellum has been reported, and the enzyme is a calmodulin-requiring enzyme (Bredt, D. S., and Snyder, S. H. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 682-685). In this paper, nitric oxide synthase has been purified to near homogeneity from the cytosol fraction of rat polymorphonuclear neutrophils. The purification procedure involves affinity chromatography with adenosine 2',5'-diphosphate-agarose and an anion exchange column, DEAE-Bio-Gel A. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the enzyme migrated as a single protein band with Mr = 150,000. The molecular weight was estimated to be 150,000 by gel filtration on a Superose 12 HR 10/30. The purified enzyme was unstable with a half-life of 3 h at pH 7.4 and 4 degrees C. The enzyme activity required the presence of Ca2+, NADPH, FAD, and (6R)-5,6,7,8-tetrahydro-L-biopterin. Calmodulin antagonists (W5, W7, W13, and trifluoperazine dihydrochloride) did not inhibit the enzyme activity, and the addition of calmodulin was also ineffective for the increase in the enzyme activity. The neutrophil enzyme appears to be a calmodulin-independent type of nitric oxide synthase.  相似文献   

13.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide secreted by endothelial cells. We investigated whether polymorphonuclear neutrophils (PMN) were able to destroy this peptide by enzymatic hydrolysis produced either by the membrane-bound endopeptidase 24.11 or by lysosomal proteinases released in the medium by activated cells. Resting and activated PMN were incubated with 125I-labelled ET-1 and the degradation fragments were analyzed by HPLC. A marked degradation of ET-1 was observed only in the presence of the stimulated cells, leading to the generation of seven radiolabelled peaks. Addition of phosphoramidon had no effect on the appearance of these metabolites, while soybean trypsin inhibitor abolished almost completely the degradation of the peptide, suggesting a role of cathepsin G in ET-1 hydrolysis. Among the purified leukocyte enzymes tested, cathepsin G hydrolyzed 125I-labelled ET-1 at the higher rate and gave rise to two radiolabelled peaks already observed in the presence of activated PMN. Incubation of unlabelled ET-1 with purified cathepsin G allowed to identify a major cleavage site corresponding to the His16-Leu17 bond, leading to the formation of inactive [1-16] fragments and the C-terminal pentapeptide. This mechanism of ET-1 inactivation could play a role in acute inflammatory reaction where PMN adhere to the vascular endothelial cells.  相似文献   

14.
15.
An inhibitory factor obtained from mature human granulocytes which suppresses granulocyte and monocyte-macrophage colony formation by an action on the endogenous colony stimulating factor-producing cells has been partially purified and characterized. The methods for purification consisted of a combination of ultracentrifugation, DEAE-Sephadex chromatography, SDS polyacrylamide gel electrophoresis and isoelectric focusing. The material had a molecular weight range of 102--128 000 and an isoelectric point between pH 6.2 and 6.4. The inhibitory factor was found to be heat stable and glycoprotein in nature.  相似文献   

16.
Free radical involvement in hypertrophic scar formation   总被引:4,自引:0,他引:4  
Hypertrophic scarring following thermal injury has become a major problem in Hong Kong. There is evidence that immunological and biochemical changes are associated with thermal injury, including pyridinoline crosslinks which are present in large quantities in hypertrophic scar, but the primary cause of hypertrophic scar formation still remains to be established. It has been reported that free radicals are assosciated with the formation of pyridinoline. In this study, attempts have been made to elucidate the involvement of free radicals in hypertrophic scar formation after thermal injury by determining the concentrations of Complement, free iron and pyridinoline crosslinks in collagen fibres. The results showed that the Complement activation product, C3d, was increased in the first week (i.e., day 7) postburn, indicating an acute inflammatory response. Free radicals, reported to be associated with the formation of pyridinoline crosslinks, and free iron content, were also found to have higher concentration in hypertrophic scar than in normal skin. The data suggest the involvement of free radical in hypertrophic scar formation. The observed increase in serum C3d concentration in about the first week indicates an acute inflammatory response to thermal injury. Both C3d and free iron concentrations (in vitro) are found higher in hypertrophic scar than in normal skin may suggest their roles in the generation of free radicals.  相似文献   

17.
C Auclair  M Torres  E Cramer  J Hakim 《Enzyme》1978,23(4):225-237
The biochemical triad, NADH oxidation, oxygen (O2) uptake and hydrogen peroxide (H2O2) formation, by subcellular fractions of human blood polymorphonuclears (PMNs) was investigated. It was found that this biochemical triad (1) was under the control of the granule-rich fraction (GRF) only; (2) was not inhibited by cyanide; (3) occurred stoichiometrically for its three components, and (4) accounted quantitatively for the respiratory burst of the stimulated PMN. It was also shown that the above biochemical triad (1) involved an enzymatic step; (2) was enhanced by acidic pH (0.5) and Mg++; (3) was inhibited by Cu++ or low concentration of Mn++; (4) was dependent on H2O2, perhydroxyl radical (HO2) and hydroxyl radical (HO) since either catalase or superoxide dismutase or scavengers of HO2 or HO were inhibitor, and (5) involved multistep reactions. Evidence is provided that the sequence of the reactions is first a generation of H2O2, (spontaneously from NADH in our incubation medium), secondly the production of HO from H2O2, thirdly the oxidation of NADH with further production of HO2,O2 uptake and H2O2 formation, probably through a chain reaction. The identification of the enzyme(s) involved in these multistep reactions needs further studies.  相似文献   

18.
Free radical formation by antitumor quinones   总被引:17,自引:0,他引:17  
Quinones are among the most frequently used drugs to treat human cancer. All of the antitumor quinones can undergo reversible enzymatic reduction and oxidation, and form semiquinone and oxygen radicals. For several antitumor quinones enzymatic reduction also leads to formation of alkylating species but whether this involves reduction to the semiquinone or the hydroquinone is not always clear. The antitumor activity of quinones is frequently linked to DNA damage caused by alkylating species or oxygen radicals. Some other effects of the antitumor quinones, such as cardiotoxicity and skin toxicity, may also be related to oxygen radical formation. The evidence for a relationship between radical formation and the biological activity of the antitumor quinones is evaluated.  相似文献   

19.
Human peripheral blood lymphocytes were exposed to 300 rad gamma-rays, in the presence or absence of radical scavengers, and the change in the frequency of chromosome aberrations was analysed with attention directed to the protection by scavengers against the formation of primary damage leading to chromosome aberrations. The results showed that the damage involved in the formation of exchange-type aberrations was efficiently protected by scavengers, and about 60 per cent of them resulted from indirect action that could be abolished by alcohols. The SH-compounds afforded additional protection. The comparison of protective ability with reaction rates demonstrated that the indirect effect was due to the reaction of OH radicals possibly to DNA as a target molecule, and the involvement of H and eaq-was unlikely. In contrast to the exchange-type aberrations, terminal deletions were not significantly protected, suggesting that the damage leading to the terminal deletion differed in its nature from the leading to the exchange-type aberration.  相似文献   

20.
Porins, a family of hydrophobic proteins located in the outer membrane of cell-wall of Gram-negative bacteria, were shown to stimulate the synthesis and release of platelet-activating factor (PAF), a 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine mediator of inflammation and endotoxic shock produced by polymorphonuclear neutrophils. PAF synthesis was independent either from contamination by LPS or generation of TNF. Experiments with labeled precursors demonstrated that PAF was synthesized via the remodeling pathway that involves acetylation of 1-O-alkyl-sn-glyceryl-3-phosphorylcholine generated from 1-O-alkyl-2-acyl-sn-glyceryl-3-phosphorylcholine by phospholipase A2 (PLA2) activity. Porins, indeed, induced a sustained PLA2-dependent mobilization of [14C]arachidonic acid that was inhibited by p-bromodiphenacylbromide. p-Bromodiphenacylbromide, an inhibitor of PLA2, also blocked PAF synthesis by preventing the mobilization of 2-lyso-PAF, the substrate for PAF-specific acetyltransferase. The addition of 2-lyso-PAF restored PAF synthesis. The activity of acetyl CoA:2-lyso-PAF acetyltransferase was transiently increased in porin-stimulated PMN and the [3H]acetyl group was incorporated in the synthetized PAF after cell preincubation with [3H]acetyl CoA. The activation of PAF synthesis by porins as well as its release were dependent on extracellular Ca2+. Porins by forming trans-membrane channels determined a sustained influx of 45Ca2+ into the cytosol. As shown by inhibitors of Ca(2+)-calmodulin complexes, calmodulin mediated the Ca(2+)-dependent activation of enzymes involved in PAF synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号