首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
Phosphatidylglycerol is an important component of pulmonary surfactant. Previous studies have shown that direct administration of corticosteroids of thyroxine to the fetus during the latter part of gestation results in accelerated lung maturation with increased surfactant production. We have shown that administration of cortisol to fetal rabbits at 24 days' gestation results 3 days later in a significant increase in the activity of pulmonary glycerolphosphate phosphatidyltransferase, an enzyme involved in the synthesis of phosphatidylglycerol. The activity of the liver enzyme was not affected. Choline phosphotransferase, CDPdiglyceride-inositol phosphatidyltransferase, lysophosphatidic acid acyltransferase and lysolecithin acyltransferase activities were not altered significantly by cortisol treatment. Thyroxine treatment had no effect on any of the enzymes of phospholipid or fatty acid biosynthesis studied.  相似文献   

2.
The phospholipid content and composition of lung wash and lung tissue as well as the activities of the enzymes involved in the synthesis of phosphatidylcholine and phosphatidylglycerol (the major surface active components of pulmonary surfactant) were studied in the rabbit during fetal lung development. In lung wash the amount of phospholipid increased four-fold during the period 27-31 day's gestation. There was a further ten-fold increase following the onset breathing. During the same period the amount of phosphatidylcholine in lung wash increased from 29% of the total phospholipid to 80% while the amount of sphingomyelin decreased from 38% to 2%. The amount of phosphatidylcholine in lung tissue also increased during development but to a much lesser extent. During fetal lung development the activities of choline kinase and cholinephosphate cytidyltransferase changed little, cholinephosphotranserase decreased while lysophosphatidic acid acyltransferase and lysolecithin acyltransferase increased. There was a postnatal increase in the activities of cholinephosphate cytidyltransferase, cholinephosphotransferase and both acyltransferases. The amount of phosphatidylglycerol, as a percentage of the total phospholipid, in lung wash and lung tissue as well as the activity of pulmonary glycerolphosphate phosphatidyltransferase did not change appreciably during development.  相似文献   

3.
Our aim was to determine whether cortisol's effect on alveolar epithelial cell (AEC) phenotypes in the fetus is mediated via a sustained alteration in lung expansion. Chronically catheterized fetal sheep were exposed to 1) saline infusion, 2) cortisol infusion (122-131 days' gestation, 1.5-4.0 mg/day), 3) saline infusion plus reduced lung expansion, or 4) cortisol infusion plus reduced lung expansion. The proportions of type I and II AECs were determined by electron microscopy, and surfactant protein (SP)-A, -B, and -C mRNA levels were determined by Northern blot analysis. Cortisol infusions significantly increased type II AEC proportions (to 38.2 +/- 2.2%), compared with saline-infused fetuses (23.8 +/- 2.4%), and reduced type I AEC proportions (to 59.0 +/- 2.2%), compared with saline-infused fetuses (70.4 +/- 2.4%). Reduced lung expansion also increased type II AEC proportions (to 52.9 +/- 3.5%) and decreased type I AEC proportions (to 34.2 +/- 3.7%), compared with control, saline-infused fetuses. The infusion of cortisol into fetuses exposed to reduced lung expansion tended to further increase type II (to 60.3 +/- 2.1%, P = 0.066) and reduce type I AEC (to 26.6 +/- 2.3%, P = 0.07) proportions. SP-A, -B, and -C mRNA levels changed in parallel with the changes in type II AEC proportions. These results indicate that cortisol alters the proportion of type I and type II AECs via a mechanism unrelated to the degree of fetal lung expansion. However, reductions in fetal lung expansion appear to have a greater impact on the proportion of AECs than cortisol.  相似文献   

4.
Septic shock in rats lead to pulmonary disorders associated with alterations of phospholipid metabolism. The ratio between phosphatidylcholine and lysophosphatidylcholine is lowered both in lung tissue and in pulmonary surfactant because enzymes of phosphatidylcholine remodeling mechanism are distinctly affected by septic shock. Specific activity of phospholipase A2 is enhanced 5-fold while specific activities of lysolecithin acyltransferase and lysolecithin : lysolecithin acyltransferase are only slightly increased or remain unchanged. Beyond that, palmitic acid content of lung tissue phosphatidylcholine is significantly reduced and replaced mainly by arachidonic acid. The release of this fatty acid by action of phospholipase A2 may lead via intermediates to the generation of potent mediators such as prostaglandins, thromboxane or slow-reacting substance.  相似文献   

5.
Pulmonary maturation in six ovine fetuses hypophysectomised by a cryosurgical method at 0.7-0.8 of pregnancy and delivered by hysterotomy at 152.2 +/- 2.9 (SD) days was compared with that in seven control fetuses delivered at 144.5 +/- 3.5 days. Both the wet and the dry weight of the lungs was less in the hypophysectomised fetuses but total DNA did not differ. Lung volumes at 40 cm of H2O and at 5 cm of H2O on deflation in hypophysectomised fetuses were less than one-third that of controls. Saturated phosphatidylcholine, as an estimate of surfactant, was lower in both lung tissue and lavage fluid. A further group of hypophysectomised fetuses was infused intravenously either with cortisol at 1 mg/h for 72 h (n = 6), or with ACTH1-24 at 5 microgram/h for 84 h (n = 6) before delivery at 155.0 +/- 2.1 days and 154.2 +/- 3.9 days respectively. None of the indices of pulmonary maturation in the cortisol-treated fetuses differed from those in untreated hypophysectomised fetuses whereas values for lung volumes at 40 and 5 cm of H2O in ACTH-treated fetuses were more than twice those of untreated hypophysectomised fetuses and did not differ significantly from controls. In addition, the amount of saturated phosphatidylcholine in lavage fluid was greater in ACTH-treated fetuses (0.13 +/- 0.10 mg/g) than in untreated hypophysectomised fetuses (0.04 +/- 0.48 mg/g). Lung volume at 40 cm of H2O in four fetuses that were thyroidectomised at the time of hypophysectomy responded to ACTH as in hypophysectomised fetuses with intact thyroids but other indices were unaffected. We conclude that hypophysectomy retards pulmonary maturation in fetal sheep. Since ACTH restores distensibility and increases alveolar surfactant in the absence of other pituitary hormones it is likely that ACTH has a major role in lung maturation. The lack of response to cortisol suggests that the effect of ACTH is not mediated only by circulating cortisol.  相似文献   

6.
The effects of fetal tracheostomy on lung development in lambs have been investigated. Seven ewes, all with twin fetuses, were given a general anesthetic. One fetus in each set of twins was tracheostomized and the other fetus was sham operated (117-122 days gestation). The fetuses were delivered by cesarean section between 137 and 140 days gestation. Fetal tracheostomy decreased lung weight and volume, altered DNA concentration and the structural development of the acinus, and decreased lung distensibility. However, tissue and airway saturated phosphatidylcholine and lung stability during deflation were not significantly affected by fetal tracheostomy. It seems that tracheostomy in fetal lambs alters lung growth but does not affect the formation or release of surfactant. These data support the hypothesis that lung volume is actively maintained and lung growth promoted by the secretion of lung fluid against the resistance of the upper airway in fetal lambs.  相似文献   

7.
We induced beta-adrenergic receptor blockade at 28 days gestation in the fetal rabbit with an irreversible beta-antagonist, bromace-tylalprenolomenthane (BrAlp). There was a marked decrease in concentration of available receptors in lung with increasing doses of BrAlp. BrAlp treatment decreased isoproterenol, but not prostaglandin, stimulated adenosine 3',5'-cyclic monophosphate (cAMP) generation in lung minces, and had no effect on activation of adenylate cyclase through non-beta-receptor-mediated components of the cyclase system in particulate preparations. Phospholipid recovery via lung lavage was significantly less from treated fetuses than from controls in groups delivered by cesarean section at 30 days (-31%) or vaginally at 31 days (-34%) and not allowed to air breathe. However, if fetuses from either group were allowed to air breathe, the difference was abolished. BrAlp treatment did not affect the phospholipid composition in lavage fluid, the rate of phosphatidylcholine synthesis, or tissue content of total or saturated phosphatidylcholine. Beta-adrenergic receptor blockade did not produce a significant change in lung water content either at or after birth regardless of the route of delivery. These data indicate that endogenous catecholamines play a role in surfactant secretion in both the fetal and newborn rabbit. We found no effects of BrAlp treatment on lung water, suggesting perhaps a less important role of endogenous catecholamines or that fewer receptors are required for this response than remained after treatment.  相似文献   

8.
To study the effect of oligohydramnios on lung growth and biochemical lung development in fetal rabbits, amniotic fluid was drained through a tube inserted into the maternal peritoneal cavity on the 23 day of gestation. Littermate fetuses without an amniotic shunt were used as controls. The fetuses were delivered abdominally on the 28 day of gestation. In a total of 8 pregnant does, 17 fetuses underwent amniotic shunting and 22 fetuses were used as controls. The amniotic shunt produced a significant reduction in the amniotic fluid volume. There were no differences in the wet weights of the fetal body, liver or brain between the two groups. However, the amniotic shunt significantly decreased the wet weight of the fetal lung, fetal lung wet weight/body weight ratio, and protein concentration per lung as compared to the control fetuses. In the fetal liver and brain tissues, no changes were found in the concentrations of total phospholipids, phosphatidylcholine (PC) or disaturated phosphatidylcholine (DSPC, the main component of lung surfactant) per g of wet tissue and per mg of protein. However, the lungs of the fetuses with amniotic shunts contained significantly more PC and DSPC, and the L/S ratio was higher than in the control fetuses. These results suggest that the oligohydramnios produced by an amniotic shunt causes pulmonary hypoplasia, but raises the pulmonary surfactant content of fetal rabbit lung.  相似文献   

9.
Acute haemorrhagic pancreatitis was produced in the dogs by transduodenal injection of autologous bile into the main pancreatic duct. There was no significant change in the activity of three regulatory enzymes of phosphatidylcholine biosynthesis (glycerophosphate acyltransferase, cytidyltransferase and cholinephosphotransferase) in lung; however, there was a 42% decrease in the amount of dipalmitoyl phosphatidylcholine (surfactant) in lung lavage due to acute pancreatitis. The decrease in lavage phospholipid content was associated with 5-fold increase in phospholipase A2 activity of lung lavage, and massive accumulation of osmiophilic spheroid structures in the alveolar space.  相似文献   

10.
The development of the fetal lung is regulated by fibroblast-type-II cell communications which involve fibroblast pneumonocyte factor (FPF). FPF production is positively regulated by glucocorticoids and negatively regulated by dihydrotestosterone (DHT) and transforming growth-factor beta (TGF-beta). We studied whether DHT or TGF-beta affected other steps in the process of lung maturation, by studying how the developing lung in organ culture would respond to exogenously supplied FPF after DHT or TGF-beta exposure. Fetal rabbit (day 19 of gestation) lung organ cultures were prepared and cultured in the presence of cortisol, DHT or TGF-beta. After seven days, the media were replaced with serum-free medium containing either cortisol or FPF conditioned medium. The incorporation of [14C]glycerol into surfactant lamellar body DSPC was studied over 24 h as the index of surfactant synthesis. Results were compared to simultaneous control cultures. Treatment had no significant effect on tissue protein concentration or on the efficiency of lamellar body recovery. Cortisol stimulated baseline incorporation of glycerol into DSPC. This was inhibited by DHT, such that DHT plus cortisol treatment was no different from untreated controls. FPF stimulated the incorporation of glycerol into DSPC, and did so even after culture treatment with DHT. Cultures treated with TGF-beta exhibited glycerol incorporation similar to untreated controls. After TGF-beta exposure, FPF did not stimulate glycerol incorporation into DSPC. We conclude that DHT interferes with progression of lung development by delaying the appearance of FPF production by the fibroblast. TGF-beta, on the other hand, inhibits other elements of lung maturation besides FPF production. We speculate that TGF-beta interferes with type-II cell development such that the cell cannot respond to FPF.  相似文献   

11.
The effect of human urogastrone on lung phospholipids in fetal rabbits   总被引:2,自引:0,他引:2  
Previous in vivo studies have demonstrated that mouse epidermal growth factor (EGF) can enhance fetal lung maturation. We have examined the effect of urogastrone, the human equivalent of mouse EGF and a related growth factor, on the phospholipid profile of fetal rabbit lung lavage and its action on fetal rabbit Type II pneumocytes in culture. Urogastrone (1 or 8 micrograms) given i.p. to fetal rabbits on day 25 of gestation resulted in increased total phospholipid, phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine contents, increased phosphatidylinositol and phosphatidylethanolamine as a proportion of phospholipid and decreased sphingomyelin as a proportion of phospholipid in lung lavages on day 28. These changes were unaccompanied by alterations in body weight or lung weight, DNA or protein concentrations. Urogastrone (16 micrograms) resulted in increased fetal deaths. Phospholipid profiles on day 27 were unchanged after fetal administration of urogastrone (1 microgram) on day 25. Urogastrone (0.01 and 0.1 ng/ml) added to fetal rabbit Type II pneumocytes in culture for 24 h enhanced the incorporation of radiolabelled choline and thymidine into phosphatidylcholine and DNA respectively. These findings indicate that human urogastrone can alter the phospholipid composition of the rabbit lung in a similar manner to that which occurs during maturation of the lung surfactant system in late pregnancy. This effect can be achieved, at least in part, by a direct action on Type II pneumocytes.  相似文献   

12.
Glucose, a major metabolic substrate for the mammalian fetus, probably makes significant contributions to surface active phospholipid synthesis in adult lung. We examined the developmental patterns of glycogen content, glycogen synthase activity, glycogen phosphorylase activity and glucose oxidation in fetal and newborn rat lung. These patterns were correlated with the development of phosphatidylcholine synthesis, content and the activities of enzymes involved in phosphatidylcholine synthesis. Fetal lung glycogen concentration increased until day 20 of gestation (term is 22 days) after which it declined to low levels. Activity of both glycogen synthase I and total glycogen synthase (I + D) in fetal lung increased late in gestation. Increased lung glycogen concentration preceded changes in enzyme activity. Glycogen phosphorylase a and total glycogen phosphorylase (a + b) activity in fetal lung increased during the period of prenatal glycogen depletion. The activity of the pentose phosphate pathway, as measured by the ratio of CO2 derived from oxidation of C1 and C6 of glucose, declined after birth. Fetal lung total phospholipid, phosphatidycholine and disaturated phosphatidylcholine content increased by 60, 90 and 180%, respectively, between day 19 of gestation and the first postnatal day. Incorporation of choline into phosphatidylcholine and disaturated phosphatidylcholine increased 10-fold during this time. No changes in phosphatidylcholine enzyme activities were noted during gestation, but both choline phosphate cytidylyltransferase and phosphatidate phosphatase activity increased after birth. The possible contributions of carbohydrate derived from fetal lung glycogen to phospholipid synthesis are discussed.  相似文献   

13.
In the present study we investigated the maturation of the surfactant phospholipids and the role of fetal sex on the effect of betamethasone in male and female rabbit fetuses. Betamethasone was administered to the doe (0.2 mg/kg intramuscularly) 42 and 18 h prior to killing. The fetuses were studied at 27 and 28 days from conception. Results from the alveolar lavage show that male fetuses tended to have a lower disaturated phosphatidylcholine/sphingomyelin ratio and lower levels of phosphatidylinositol. Phosphatidylglycerol was detected in trace amounts. This was apparently due to the high extracellular levels of myo-inositol inhibiting the synthesis of surfactant phosphatidylglycerol while increasing the synthesis of surfactant phosphatidylinositol. Betamethasone increased the recovery of disaturated phosphatidylcholine and phosphatidylinositol from the lung lavage in both sexes. As studied in lung slices in vitro, the betamethasone treatment decreased the incorporation of glucose into phospholipids, including into the fatty acid moiety of disaturated phosphatidylcholine, although it had no significant effect on the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. However, the addition of palmitate increased the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. The betamethasone treatment did not increase the incorporation of [1-14C]pyruvate into disaturated phosphatidylcholine. Following betamethasone administration, the availability of fatty acids may become rate-limiting for the synthesis of surfactant phospholipids. Betamethasone increased the activities of phosphatidic acid phosphohydrolase and phosphatidate cytidyltransferase in a fraction of microsomal membranes. The present evidence suggests that the glucocorticoid-induced lung maturation and the maturation of the normal lung are associated with an increase in the activity of the enzymes which are involved in metabolizing phosphatidic acid to neutral and acidic surfactant secretion of the male fetus was not explained by possible sex-related differences in the biosynthesis of the phospholipids.  相似文献   

14.
To investigate the increased incidence of respiratory distress syndrome (RDS) that occurs in infants of diabetic mothers (IDM) with poor maternal glucose homeostasis, we infused glucose intravenously at a rate of 14 +/- 2 (SD) mg.kg-1.min-1 into eight twin and four singleton chronically catheterized fetal lambs from 112 days (0.77) gestation onward. Twelve catheterized and seven uncatheterized fetuses served as controls, including the eight twins of the glucose-treated fetuses. Glucose infusion resulted in a twofold elevation in fetal serum glucose levels and a 2.2-fold elevation in fetal serum insulin levels. Before 113 days (0.9) gestation, pulmonary disaturated phosphatidylcholine (DSPC) content was 1.5-fold higher in the glucose-infused fetuses than in the controls. However, after 0.9 gestation, pulmonary DSPC content increased 2.2-fold in the controls but did not increase significantly in the glucose-infused fetuses. In addition, the DSPC content of lung lavage was 5.0-fold higher in the controls and lung stability to air inflation was 2.0-fold greater and to deflation was 2.2-fold greater than in the glucose-infused fetuses. Pulmonary adenosine 3',5'-cyclic monophosphate-dependent protein kinase activity was also 1.5-fold higher, and pulmonary protein kinase C activity was 1.3-fold higher in the controls than in the glucose-infused fetuses. In contrast, glucose infusion was associated with a 1.8-fold increase in pulmonary glycogen content and with increased activities of glycogen phosphorylase kinase and glycogen phosphorylase. We conclude that the effects of chronic glucose infusion on fetal lamb lung DSPC and lung stability are compatible with a predisposition of the fetus to develop RDS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of fetal infusions of cortisol and thyrotropin-releasing hormone (TRH) singly and together on pressure-volume relationships and saturated phosphatidylcholine (SPC) concentrations in the lungs were studied in 28 fetal sheep delivered at 128 days of gestation. Four groups each of 7 fetuses were infused with either saline (for 156 h), TRH (25 micrograms/h in 60-s pulses for 156 h), TRH (for 156 h) combined with cortisol (1 mg/h for 84 h), or cortisol (for 84 h). Cortisol had no effect on SPC concentrations, whereas both TRH and cortisol plus TRH increased the concentration of SPC in lavage fluid but not lung tissue. Neither cortisol nor TRH significantly affected lung distensibility [V40; 0.64 +/- 0.04 and 0.57 +/- 0.10 (SE) ml/g, respectively, vs. 0.41 +/- 0.03 ml/g in controls] or stability (V5; 0.24 +/- 0.01 and 0.35 +/- 0.07 ml/g vs. 0.24 +/- 0.03 ml/g), whereas treatment with a combination of the two hormones was associated with a fourfold increase in V40 (1.70 +/- 0.16 ml/g) and V5 (1.03 +/- 0.15 ml/g). Since raised concentrations of cortisol, triiodothyronine, and estradiol-17 beta (treatment with cortisol) had no effect on V40 and V5, whereas similar hormonal changes associated with elevated prolactin levels (treatment with cortisol plus TRH) had marked effects, we conclude that prolactin plays an essential part in the synergism of cortisol and TRH.  相似文献   

16.
Fetal lung development, in particular surfactant synthesis, exhibits a sexual dimorphism. Dihydrotestosterone (DHT) has been shown to delay fetal pulmonary surfactant production, but the potential role for testosterone is unknown. Both testosterone and DHT are potent masculinizing hormones, yet in some instances, an end organ specificity for DHT is present. We hypothesized that the delay in fetal lung surfactant production is dependent upon DHT such that inhibition of the synthesis of DHT from the precursor hormone testosterone would eliminate the sex difference by allowing the male fetus to produce surfactant at the female level. We tested this hypothesis using 17 beta-N,N-diethylcarbamoyl-4-aza-4-methyl-5-alpha-androstane-3-one (4-MA), a potent inhibitor of the enzyme 5 alpha-reductase, which converts testosterone into DHT. First, studies were performed in vivo. 4-MA (20 mg/kg/day) or an equivalent volume of vehicle was injected into pregnant rabbits from Day 12 through Day 26 of gestation. On Day 26, the fetuses were delivered, the lungs were lavaged, and fetal sex was noted. Treatment with 4-MA resulted in a lack of any male-female difference in the anogenital distance and no DHT was detected in the serum of any treated fetus. Phosphatidylcholine (PC), saturated phosphatidylcholine (SPC), and sphingomyelin (S) were measured in the lung lavage, and were expressed as the ratios of PC to sphingomyelin (PC:S) and SPC to sphingomyelin (SPC:S). Sex differences in the PC to sphingomyelin ratio of 4-MA-treated fetuses (female PC:S ratio, 1.43 +/- 0.14; male PC:S ratio, 1.00 +/- 0.13 [mean +/- SE]; P = 0.04) and in the SPC:S ratio of the 4-MA-treated group (female SPC:S ratio, 0.68 +/- 0.10; male SPC:S ratio, 0.35 +/- 0.10; P = 0.03) were present after treatment with 4-MA. The effect of testosterone and of 4-MA on fibroblast pneumonocyte factor (FPF) production was studied in vitro. Fetal rat lung fibroblasts were cultured to confluence with either no added androgen, DHT, testosterone, or testosterone plus 4-MA, and conditioned media for FPF were prepared. Conditioned media were added to fetal Type II cell cultures and FPF activity was measured as the degree of stimulation of the incorporation of [3H] choline into SPC. The conversion of radiolabeled testosterone to DHT by the fibroblasts was inhibited by 4-MA (10(-5) M). Conditioned media from untreated female fibroblasts stimulated with cortisol exhibited significant FPF activity ([3H]choline incorporation into SPC, 140 +/- 17% of control).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Fetal rat lung removed at 15 days gestation and placed in organ culture incorporates choline into phosphatidylcholine. Addition of 10(-9) M dexamethasone resulted in increased rates of choline incorporation per micrograms protein after both 6 and 12 days culture. This concentration of dexamethasone did not increase tissue phosphatidylcholine or disaturated phosphatidylcholine. Thus, at a culture time when dexamethasone had a significant effect on choline incorporation, there was no change in either the total phospholipid or disaturated phosphatidylcholine content of the lung tissue. The transplacental administration of dexamethasone decreased fetal lung DNA and phospholipid content. At the mid-range dosage tested (400 micrograms), dexamethasone depressed DNA (51%) appreciably more than total phosphatidylcholine (28%) and disaturated phosphatidylcholine (33%). These results show that the hormone does not increase the total amount of surfactant per lung. The increased disaturated phosphatidylcholine per mg DNA results in an ostensible beneficial effect of dexamethasone on surfactant and may reflect an increased proportion of Type II cells in fetal lung both in vitro and in vivo following hormone exposure. Disaturated phosphatidylcholine per Type II alveolar cell is no doubt increased but the trade-off is fewer total cells in the lung.  相似文献   

18.
Methods are presented for the quantitative isolation of surfactants from fetal and newborn rabbit alveolar lavage returns and post-lavaged lung tissue homogenates. The phospholipid content of both fractions progressively increased between 27 days gestation and term (31 days). The tissue-stored fraction increased approximately 16-fold (from 0.48 +/- 0.13 to 7.83 +/- 0.86 mg/g dry lung) and the alveolar fraction more than 30-fold (from 0.08 +/- 0.02 to 2.69 +/- 0.52 mg/g dry lung). Developmental changes in phospholipid composition were also observed. Tissue-stored surfactant was prepared using differential and density gradient centrifugation. Alveolar surfactant was isolated during fetal development as a high-speed pellet following a one-step differential centrifugation. There was little change in the phospholipid content of fetal alveolar lavage supernatant (range 0.12 +/- 0.04 to 0.28 +/- 0.09 mg/g dry lung). By the first postnatal day the phospholipid content of both lavage fractions significantly increased (pellet, 7.51 +/- 1.79; supernatant, 4.01 +/- 1.36 mg/g dry lung) and both were identified as surfactant. This increase in alveolar surfactant was accompanied by an approximately twofold decrease (to 3.81 +/- 1.1 mg/g dry lung) in the tissue-stored fraction. These data provide a quantitative profile of surfactant accumulation and secretion in developing rabbit lung.  相似文献   

19.
Fetal surfactant from lamb lung fluids collected daily from day 114 to day 146 of gestation, was isolated by centrifugation (pellet material) and further purified by sucrose density gradient centrifugation. The concentration of the pellet material from lung fluid (crude surfactant) increased from day 125 till day 135 and fluctuated strongly from that period onwards, whereas lung fluid secretion increased linearly until a few days before parturition. The pellet phospholipid composition changed with gestational age, suggesting biochemical maturation of the surfactant-producing system. The purified surfactant fraction, of which approximately 85% was phosphatidylcholine, did not change however from day 122 onwards except for a small increase in the percentage of phosphatidylglycerol. Alveolar wash surfactant or the lamellar body material, isolated from fetal lungs at different gestational ages had the same composition as surfactant from lung fluids. Only the composition of lamellar bodies of '125 day' lungs differed slightly from that of the lung fluid surfactant. The similar characteristics of all purified surfactant fractions throughout gestation indicate that, in the fetal lamb, lung maturation is associated with an increase in surfactant production no significant changes in phospholipid composition.  相似文献   

20.
The effects of hydrocortisone on lung structure in fetal lambs   总被引:1,自引:0,他引:1  
The effect of cortisol infusion on fetal lung development was studied in lambs. Changes were compared with those of control groups of saline-infused fetuses of the same age (day 132) and normal late gestation fetuses (142 +/- 4.6 days). Cortisol was infused into five fetal lambs at 129 days of gestation at a rate of 17.0 mg/day. Four fetuses were delivered by hysterotomy at the onset of labour-like uterine activity (58 +/- 3 h). In cortisol-infused fetuses the concentration of cortisol in fetal plasma and tracheal fluid rose to levels similar to those in normal fetuses during the last week of gestation. Progesterone concentration in maternal plasma declined at about 48 h after the start of treatment. Cortisol-infused lambs showed increases in fixed lung volume, specific lung volume, absolute volume of both parenchyma and non-parenchyma and the proportion of the parenchyma which was potential airspace and a decrease in the proportion of parenchyma. For cortisol-infused lambs Type II cell size and the abundance of lamellar bodies, and the volume fraction of cell occupied by the nucleus were similar to the 142 day group, whereas Golgi apparatus and RER were closer to age matched saline-infused (day 132) controls. Glycogen content was midway between the two control groups. We conclude that infusion of cortisol for about 60 h at physiological levels, beginning at 0.85 of gestation, accelerates many, but not all aspects of pulmonary parenchymal maturation, expressed in terms either of morphogenesis of the gas exchange area or differentiation of Type II alveolar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号