首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione reductase (EC 1.6.4.2) was purified from spinach (Spinacia oleracea L.) leaves by affinity chromatography on ADP-Sepharose. The purified enzyme has a specific activity of 246 enzyme units/mg protein and is homogeneous by the criterion of polyacrylamide gel electrophoresis on native and SDS-gels. The enzyme has a molecular weight of 145,000 and consists of two subunits of similar size. The pH optimum of spinach glutathione reductase is 8.5–9.0, which is related to the function it performs in the chloroplast stroma. It is specific for oxidised glutathione (GSSG) but shows a low activity with NADH as electron donor. The pH optimum for NADH-dependent GSSG reduction is lower than that for NADPH-dependent reduction. The enzyme has a low affinity for reduced glutathione (GSH) and for NADP+, but GSH-dependent NADP+ reduction is stimulated by addition of dithiothreitol. Spinach glutathione reductase is inhibited on incubation with reagents that react with thiol groups, or with heavymetal ions such as Zn2+. GSSG protects the enzyme against inhibition but NADPH does not. Pre-incubation of the enzyme with NADPH decreases its activity, so kinetic studies were performed in which the reaction was initiated by adding NADPH or enzyme. The Km for GSSG was approximately 200 M and that for NADPH was about 3 M. NADP+ inhibited the enzyme, assayed in the direction of GSSG reduction, competitively with respect to NADPH and non-competitively with respect to GSSG. In contrast, GSH inhibited non-competitively with respect to both NADPH and GSSG. Illuminated chloroplasts, or chloroplasts kept in the dark, contain equal activities of glutathione reductase. The kinetic properties of the enzyme (listed above) suggest that GSH/GSSG ratios in chloroplasts will be very high under both light and dark conditions. This prediction was confirmed experimentally. GSH or GSSG play no part in the light-induced activation of chloroplast fructose diphosphatase or NADP+-glyceraldehyde-3-phosphate dehydrogenase. We suggest that GSH helps to stabilise chloroplast enzymes and may also play a role in removing H2O2. Glucose-6-phosphate dehydrogenase activity may be required in chloroplasts in the dark in order to provide NADPH for glutathione reductase.Abbreviations GSH reduced form of the tripeptide glutathione - GSSG oxidised form of glutathione  相似文献   

2.
Glutathione reductase from the liver of DBA/2J mice was purified to homogeneity by means of ammonium sulfate fractionation and two subsequent affinity chromatography steps using 8-(6-aminohexyl)-amino-2'-phospho-adenosine diphosphoribose and N6-(6-aminohexyl)-adenosine 2',5'-biphosphate-Sephadex columns. A facile procedure for the synthesis of 8-(6-aminohexyl)-amino-2'-phospho-adenosine diphosphoribose is also presented. The purified enzyme exhibits a specific activity of 158 U/mg and an A280/A460 of 6.8. It was shown to be a dimer of Mr 105000 with a Stokes radius of 4.18 nm and an isoelectric point of 6.46. Amino acid composition revealed some similarity between the mouse and the human enzyme. Antibodies against mouse glutathione reductase were raised in rabbits and exhibited high specificity. The catalytic properties of mouse liver glutathione reductase have been studied under a variety of experimental conditions. As with the same enzyme from other sources, the kinetic data are consistent with a 'branched' mechanism. The enzyme was stabilized against thermal inactivation at 80 degrees C by GSSG and less markedly by NADP+ and GSH, but not by NADPH or FAD. Incubation of mouse glutathione reductase in the presence of NADPH or NADH, but not NADP+ or NAD+, produced an almost complete inactivation. The inactivation by NADPH was time, pH and concentration dependent. Oxidized glutathione protected the enzyme against inactivation, which could also be reversed by GSSG or other electron acceptors. The enzyme remained in the inactive state even after eliminating the excess NADPH. The inactive enzyme showed the same molecular weight as the active glutathione reductase. The spectral properties of the inactive enzyme have also been studied. It is proposed that auto-inactivation of glutathione reductase by NADPH and the protection as well as reactivation by GSSG play in vivo an important regulatory role.  相似文献   

3.
Glutathione reductase (NAD(P)H:GSSG oxidoreductase EC 1.6.4.2.) was purified 1160-fold to homogeneity from the nonsulfurous purple bacteria Rhodospirillum rubrum (wild type). Specific activity of the pure preparation was 102 U/mg. The enzyme displayed a typical flavoprotein absorption spectrum with maxima at 274,365, and 459 nm and an absorbance ratio A280/A459 of 7.6. The amino acid analysis revealed an unusually high content of glycine and arginine residues. Titration of the enzyme with 5,5'-dithiobis(2-nitrobenzoic acid) showed a total of two free thiol groups per subunit, one of which is made accessible only under denaturing conditions. An isoelectric point of 5.2 was found for the native enzyme. Km values, determined at pH 7.5, were 6.1 and 90 microM for NADPH and GSSG, respectively. NADH was about 2% as active as NADPH as an electron donor. The enzyme's second choice in disulfide substrate was the mixed disulfide of coenzyme A and glutathione, for which the specific activity and Km values were 5.1 U/mg and 3.4 mM, respectively. A native molecular weight of 118,000 was found, while denaturing electrophoresis gave a value of 54,400 per subunit, thus suggesting that R. rubrum glutathione reductase exists as a dimeric protein. Other physicochemical constants of the enzyme, such as Stokes radius (4.2 nm) and sedimentation coefficient (5.71 S), were also consistent with a particle of 110,000.  相似文献   

4.
Nitric oxide (NO) synthase (EC 1.14.23) has been purified to apparent homogeneity from rat macrophages. The purification procedure involves affinity chromatography with adenosine 2',5'-diphosphate-agarose and gel filtration chromatography on a Superose 12 HR 10/30 column. The apparent molecular weight is 300,000 by gel filtration. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the enzyme migrates as a single protein band with Mr = 150,000. The purified enzyme is colorless, and an absorption maximum is observed at 280 nm. The half-life of the enzyme activity is 6 h at pH 7.4 and 4 degrees C. The enzyme activity required the presence of NADPH, (6R)-5,6,7,8-tetrahydro-L-biopterin, and dithiothreitol. Although the cerebellar and endothelial enzyme require Ca2+ and calmodulin, these are not required by the macrophage enzyme. The macrophage nitric oxide synthase (an inducible enzyme) seems to be different from the cerebellar and endothelial enzyme (a constitutive enzyme).  相似文献   

5.
Dihydrofolate reductase (EC 1.5.1.3), purified to homogeneity from an amethopterin-resistant subline (R6) of cultured L1210 murine leukemia cells, has been used to study enzyme-substrate and enzyme-inhibitor complexes. NADPH, NADP+acid-modified NADPH (λmax at 265 nm, elevated absorbance at 290 nm), 2′-phosphoadenosine-5′-diphosphate ribose, dihydrofolate, and amethopterin formed binary complexes with the enzyme. Ternary complexes could be formed by admixing the enzyme with: (a) NADPH and amethopterin; (b) NADP+ and tetahydrofolate; and (c) acid-modified NADPH and dihydrofolate. All of these complexes migrated as stable well-defined bands on polyacrylamide gel electrophoresis at pH 8.3. The bands could be visualized by staining both for enzyme activity and for protein. These binary and ternary complexes were also stable to extensive dialysis. Spectra of the dialyzed enzyme complexes indicated that each ligand was present at an equimolar ratio with the enzyme.  相似文献   

6.
Rabbit liver glutathione reductase. Purification and properties   总被引:2,自引:0,他引:2  
Hepatic glutathione reductase can be obtained in relatively good amounts from rabbit by a procedure which is fairly simple and sufficiently rapid. The purified flavoprotein shows absorbance ratios at 274, 379, and 463 nm of 8.2:0.92:1.0, respectively; the FAD fluorescence is nearly completely quenched by the protein. Gradient ultracentrifugation and sodium dodecyl sulfate gel electrophoresis indicate that the enzyme is a dimer, consisting of subunits of about 56,000 molecular weight; flavin content suggests one FAD per chain. Gel filtration under a variety of conditions, on the other hand, yields a molecular weight in the range 56,000–67,000. It is proposed that rabbit liver glutathione reductase can be active also as monomer. Kinetic parameters of the enzyme have been determined under optimal conditions. The rabbit liver glutathione reductase is, at physiological pH, absolutely specific for NADPH.  相似文献   

7.
NADP-dependent non-phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9), previously described in higher plants, has been now found to be present in eukaryotic green algae, but in neither cyanobacteria nor non-photosynthetic microorganisms. The enzyme from the unicellular green alga Chlamydomonas reinhardtii, strain 6145c, has been purified to apparent electrophoretic homogeneity. The non-phosphorylating enzyme was effectively separated from the NADP-dependent phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) dye-ligand chromatography on Reactive Red-120 agarose. The purified enzyme exhibited an optimum pH in the 8.5–9.0 range and a specific activity of approx. 8 μmol·(mg protein)−1·min−1. The native protein was characterized as a homotetramer with a molecular weight of 190 000, a Stokes radius of 5.2 mn, and an isoelectric point of 6.9. From kinetic studies, Km-values of 9.8 and 51 μM were calculated for NADP and D-glyceraldehyde 3-phosphate, respectively, an absolute specificity for both substrates being observed. L-Glyceraldehyde 3-phosphate was a potent non-competitive inhibior (Ki, 48 μM). The reaction products NADPH and D-3-phosphoglycerate inhibited enzyme activity in a competitive manner with respect to NADP (Ki, 78 μM) and D-glyceraldehyde 3-phosphate (Ki, 1.2 mM), respectively. Thermal inactivation occurred above 45°C and was effectively prevented by either substrate. The presence of essential vicinal thiol groups is suggested by the inactivation produced by diamide, with D-glyceraldehyde 3-phosphate, but not NADP, behaving as a protective agent. The enzyme's possible physiological role in photosynthetic metabolism is discussed briefly.  相似文献   

8.
Highly purified aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) from Escherichia coli, already of full activity, is further activated 3.3-fold by limited treatment with trypsin. The activation requires a few minutes to attain maximum level, and hereafter the activity gradually decreases to complete inactivation. Prior or intermediate addition of soybean trypsin inhibitor results in an immediate cessation of any further change in the enzyme activity. Upon trypsin-mediated activation no appreciable change is detected in the molecular weight of the enzyme subunits as judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis, nor in the pH vs. activity profile in the presence of added metal ions. However, S0.5 and hill coefficient for L-aspartate considerably increase upon activation. As the trypsin-mediated activation proceeds, a marked absorbance difference spectrum of the trypsin-treated aspartase vs. untreated aspartase appears with negative absorbance maxima at 278 and 285 nm. When the trypsin-activated enzyme is denatured in 4 M guanidine-HCl, followed by removal of the denaturant by dilution, the enzyme activity is readily restored to as much as 1.5 times that of the native enzyme, indicating that the trypsin-activated enzyme is rather a stable molecule.  相似文献   

9.
The NADP-linked glucose-6-phosphate dehydrogenase from Acetobacter hansenii (formerly known as Acetobacter xylinum) has been purified to apparent homogeneity. The sequence of the 10 N-terminal amino acids was determined. The subunit molecular weight of the enzyme is 53,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; gel filtration studies under nondenaturing conditions revealed that the molecular weight of the enzyme is 200,000 to 220,000 at pH 6.5 and 9.5, suggesting that the native enzyme is a tetramer. Specificity studies at both pH 6.5 and 9.5 demonstrated that the enzyme is a typical NADP-preferring glucose-6-phosphate dehydrogenase. The enzyme's catalytic activity increases with increasing pH, kcat being approximately 4 times greater at pH 9.5 than at pH 6.7 and the Km for NADP+ being 3 times lower at the higher pH; but the Km for glucose 6-phosphate is nearly 20 times higher at pH 9.5 than at pH 6.7, suggesting that the enzyme is catalytically more efficient at the lower pH. At pH 6.7, initial velocity measurements, product inhibition by NADPH, and inhibition by glucosamine 6-phosphate yielded results that were consistent with a steady-state random mechanism. At pH 9.5, steady-state kinetic analyses suggested that the mechanism is ordered, with coenzyme binding first, but nonlinear double-reciprocal plots were observed in the presence of NADPH when glucose 6-phosphate was varied and a complete kinetic analysis was not undertaken. Among several nucleotides and potential inhibitory ligands examined, only 2',5'-ADP inhibited the enzyme significantly.  相似文献   

10.
Glutathione reductase (EC 1.6.4.2) was purified from intact pea (Pisum sativum) chloroplasts by a method which includes affinity chromatography on ADP-agarose. Fractions from the affinity column which had glutathione reductase activity consisted of polypeptides of 60 and 32 kilodaltons. Separation of the proteins by electrophoresis on native gels showed that glutathione reductase activity was associated with 60 kilodalton polypeptides and not with the 32 kilodalton polypeptides. Antibodies to spinach whole leaf glutathione reductase (60 kilodaltons) cross-react with the chloroplast 60 kilodalton glutathione reductase but not the 32 kilodalton polypeptides. In the absence of dithiothreitol the 60 kilodalton polypeptides showed a shift in apparent molecular weight on sodium dodecyl sulfate gels to 72 kilodaltons. Dithiothreitol did not alter the activity of the chloroplast enzyme. Chloroplast glutathione reductase is relatively insensitive to NADPH.  相似文献   

11.
The reduced nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate oxidoreductase (EC 1.6.6.2) from Aspergillus nidulans was purified over 200-fold by use of salt fractionation, gel filtration, and ion-exchange chromatography. The purified enzyme was specific for NADPH and catalyzed reduction of nitrate, cytochrome c from isolated mitochondria of Aspergillus, and mammalian cytochrome c. An S(0.725) (20, w) of 7.8 was derived with sucrose density gradient centrifugation, and a Stokes radius of 6.4 nm was derived by gel filtration on Sephadex G-200. From these values, a molecular weight of 197,000 was computed, assuming v = 0.725 cm(3)/g. The spectral properties of the purified enzyme suggested a flavine component was present but revealed no pattern indicative of a hemoprotein. A cytochrome c, similar to the cytochrome c from isolated mitochondria, was found unassociated with the nitrate reductase after ion-exchange chromatography. No NADPH-nitrate reductase activity was detected in isolated mitochondria. Spectrally discernable reduction of the flavine component of the enzyme at 450 nm was noted after reaction with NADPH. This reduction was inhibited by p-chloromercuribenzoate but not by KCN. The addition of nitrate to NADPH reduced enzyme caused a reoxidation of the flavine component via a reaction which was inhibited by KCN but not by p-chloromercuribenzoate. The half-life of the purified enzyme at 37 C was 20 min for NADPH-nitrate reductase and 35 min for NADPH-cytochrome c reductase.  相似文献   

12.
J D Dignam  H W Strobel 《Biochemistry》1977,16(6):1116-1123
(NADPH)-cytochrome P-450 reductase was purified to apparent homogeneity by a procedure utilizing nicotinamide adenine dinucleotide phosphate (NADP)-Sepharose affinity column chromatography. The purified flavoprotein has a molecular weight of 79 700 and catalyzes cytochrome P-450 dependent drug metabolism, as well as reduction of exogenous electron acceptors. Aerobic titration of cytochrome P-450 reductase with NADPH indicates that an air-stable reduced form of the enzyme is generated by the addition of 0.5 mol of NADPH per mole of flavin, as judged by spectral characteristics. Further addition of NADPH causes no other changes in the absorbance spectrum. A Km value for NADPH of 5 micron was observed when either cytochrome P-450 or cytochrome c was employed as electron acceptor. A Km value of 8 +/- 2 micron was determined for cytochrome c and a Km of 0.09 +/- 0.01 micron was estimated for cytochrome P-450.  相似文献   

13.
The enzyme UDP-N-acetylenolpyruvoylglucosamine reductase (EC 1.1.1.158) was purified to homogeneity from Escherichia coli by affinity chromatography on a NADP-agarose column. The evidence suggests that the enzyme (molecular weight 35,000) is composed of two nonidentical subunits of molecular weight 21,500 and 13,500, respectively. The absorption spectrum of the purified enzyme shows no absorption band around 450 nm and thus does not support the previous suggestions that the enzyme is a flavoprotein. However, the A280: A260 ratio gives a value of 0.86 which suggests the presence of tightly bound nucleotide. A quantitative transfer of tritium from 1,4-[4-3H]NADPH to UDP-N-acetylenolpyruvoylglucosamine to form UDP-N-E13H]acetylmuramic acid was also observed, which clearly shows that the enzyme is not a flavoprotein.  相似文献   

14.
An aldehyde reductase (EC 1.1.1.2) from human liver has been purified to homogeneity. The enzyme is NADPH-dependent, prefers aromatic to aliphatic aldehydes as substrates, and is inhibited by barbiturates and hydantoins. The following physicochemical parameters were determined: molecular weight, 36,200; sedimentation coefficient, 2.9 S; Stokes radius, 2.65 nm; isoelectric point, pH 5.3; extinction coefficient at 280 nm, 54,300 M-1 cm-1. Results from polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate, gel filtration, and ultracentrifugation suggest a monomeric structure. On molecule of NADPH binds to the enzyme causing a red shift of the coenzyme absorption maximum from 340 to 352 nm. The amino acid composition has been determined and a partial specific volume of 0.74 was computed from these data. An alpha-helicity of 7 and 18% was estimated from the ellipticities at 208 and 222 nm, respectively. Combination of the most reactive thiol group with p-mercuribenzoate does not cause loss of catalytic activity. Inactivation occurs when more than one thiol group is modified. The presence of NADPH or NADP+ prevents loss of activity by thiol modification. The comparison of structural features of aldehyde reductase with other monomeric and oligomeric dehydrogenases suggest similarities of aldehyde reductase with octopine dehydrogenase.  相似文献   

15.
We have completely purified, in parallel, a low molecular weight, non-specific, non-lipidic, Na+,K(+)-ATPase inhibitory factor from bovine hypothalamic and pituitary tissues. In the final purification step we obtain, from both tissues, a single, homogeneous peak, with a maximal absorbance at 247 nm. This factor, at physiological concentrations of potassium (5-25 mM), inhibits in a dose-response manner Na+,K(+)-ATPase and displaces ouabain from its receptor at the enzyme structure. The factor isolated from both tissues is identical, being the specific activity per weight of tissue higher in hypophysis. No factor was found in cerebral cortex, used as tissue control.  相似文献   

16.
The Lubrol-dispersed guanylate cyclase from sea urchin sperm was purified and isolated essentially free of detergent by GTP affinity chromatography, DEAE-Sephadex chromatography, and gel filtration. After removal of the detergent, the enzyme remained in solution in the presence of 20% glycerol. The specific activity of the purified enzyme was about 12 mumol of guanosine 3':5'-monophosphate (cyclic GMP) formed - min-1 - mg of protein-1 at 30 degrees, an activity about 4600 times that of a soluble guanylate cyclase purified recently from Escherichia coli (Macchia V., Varrone, S., Weissbach, H., Miller, D.L., and Pastan, I. (1975) J. Biol. Chem. 250, 6214-6217). The cyclic GMP phosphodiesterase activity was negligible and adenosine 3':5'-monophosphate (cyclic AMP) phosphodiesterase was not detectable in the purified preparation. Cyclic AMP formation from ATP occurred at a rate of 0.002% of that of guanylate cyclase. In the absence of phosphodiesterase or guanosine triphosphatase inhibitors, 100% of the added GTP was converted to cyclic GMP. The purified enzyme required Mn2+ for maximum activity, the relative rates in the presence of Mg2+ or Ca2+ being less than 0.6% of the rates with Mn2+. The purified enzyme displayed classical Michaelis-Menten kinetics with respect to MnGTP (apparent Km is approximately equal to 170 muM) in contrast to the positively cooperative kinetic behavior displayed by the unpurified, detergent-dispersed, or particulate guanylate cyclase. The molecular weight of the purified enzyme was approximately 182,000 as estimated on Bio-Gel A-0.5m columns equilibrated in the presence or absence of 0.1 M NaCl. The unpurified, detergent-dispersed enzyme also migrated with an apparent molecular weight of 182,000 on columns equilibrated with 0.5% Lubrol WX and 0.1 M NaCl, but it migrated as a large aggregate (molecular weight is greater than 5 X 10(5)) on columns equilibrated in the absence of either the detergent of NaCl. After gel filtration, the unpurified, dispersed enzyme still yielded positive cooperative kinetic patterns as a function of MnGTP. Na dodecyl-SO4 gel electrophoresis of the enzyme after the DEAE-Sephadex or the gel filtration steps resulted in two major protein bands with estimated molecular weights of 118,000 and 75,000. Whether or not these protein bands represent the subunit molecular weights of guanylate cyclase is unknown at present.  相似文献   

17.
Fatty acid synthesis capacity of the insect Ceratitis capitata has been investigated in vitro from [1-14C]acetyl-CoA using homogenates at different stages of development. A maximum activity was observed after 5--6 days of larval development. But homogenates of the pharate adult insect did not show synthetic capacity of fatty acids. Fatty acid synthetase complex has been isolated from the particle-free supernatant fraction of homogenates from the 6-day C. capitata larvae. The enzyme complex was purified 182-fold with respect to the protein contained in the crude extract. The complex was homogeneous when analysed by gel filtration and by polyacrylamide-gel electrophoresis. The molecular weight was 5.2X10(5). The enzyme was dissociated into half-molecular subunits. Amino acid analysis, general properties, stability and kinetic constants (V and Km) for the substrates are reported. The fatty acid synthetase complex from the insect contains 42+/-1-SH residues and one phosphopatetheine moiety per 5.2X10(5). Activity was dependent on the presence of NADPH; FMN strongly inhibited the enzyme activity promoted by NADPH. The enzyme complex synthesized a range of fatty acid (10:0--18:0), palmitate being the predominant end product. The proportions of fatty acids synthesized varied with substrate concentrations. Fatty acids released from the complex were almost completely in the free form.  相似文献   

18.
Biliverdin reductase was purified from pig spleen soluble fraction to a purity of more than 90% as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was a monomer protein with a molecular weight of about 34,000. Its isoelectric point was at 6.1-6.2. The enzyme was strictly specific to biliverdin and no other oxiodoreductase activities could be detected in the purified enzyme preparation. The purified enzyme could utilize both NADPH and NADH as electron donors for the reduction of biliverdin. However, there were considerable differences in the kinetic properties of the NADPH-dependent and the NADH-dependent biliverdin reductase activities: Km for NADPH was below 5 microM while that for NADH was 1.5-2 mM; the pH optimum of the reaction with NADPH was 8.5 whereas that of the reaction with NADH was 6.9; Km for biliverdin in the NADPH system was 0.3 microM whereas that in the NADH system was 1-2 microM. In addition, both the NADPH-dependent and NADH-dependent activities were inhibited by excess biliverdin, but this inhibition was far more pronounced in the NADPH system than in the NADH system. IX alpha-biliverdin was the most effective substrate among the four biliverdin isomers, and the dimethylester of IX alpha-biliverdin could not serve as a substrate. Biliverdin reductase was also purified about 300-fold from rat liver soluble fraction. The hepatic enzyme was also a monomer protein with a molecular weight of 34,000 and showed properties quite similar to those of the splenic enzyme as regards the biliverdin reductase reaction. The isoelectric point of the hepatic enzyme, however, was about 5.4. It was assumed that NADPH rather than NADH is the physiological electron donor in the intracellular reduction of IX alpha-biliverdin. The stimulatory effects of bovine and human serum albumins on the biliverdin reductase reactions were also examined.  相似文献   

19.
Kidney alkaline phosphatase was purified to homogeneity. It is a glycoprotein of about 172,000 molecular weight. Analyses of the subunit structure by sedimentation equilibrium in 6 M guanidine hydrochloride and by gel electrophoresis in sodium dodecyl sulfate indicate that the alkaline phosphatase is a dimer comprising two very similar or identical subunits of about 87,000 molecular weight. The native enzyme contains 4.5 +/- 0.2 g atoms of zinc per mol of protein. Reconstitution experiments from the apophosphatase show that binding of 4 Zn2+ per mol of dimer is essential for full activity. The kinetic data of Zn2+ binding to the apoprotein require at least a two-step mechanism, in which one of the steps corresponds to a conformational change within the enzyme. This paper also presents data concerning amino acid composition, sugar content, enzyme stability, absorbance index, and sedimentation velocity.  相似文献   

20.
1. Glutathione reductase (NAD(P)H:oxidized-glutathione oxidoreductase, EC. 1.6.4.2) from human erythrocytes was purified 49 000-fold with an overall yield of 15% and a 280/460 nm absorbance ratio of 6.03. The procedure used was the method of Worthington and Rosemeyer modified by addition of heating and recrystallization. 2. It was concluded from the results of purification, electrofocusing and inhibition studies that glutathione reductase is a single enzyme which used both NADPH and NADH as hydrogen donors. 3. Apoenzyme cross-reacts with the antibody to the holoenzyme but has a slightly reduced affinity to the antibody. Apoenzyme can be removed from the hemolysate by heating and centrifugation without loss of holoenzyme. 4. Indirect immunological assay of the specific activity of the erythrocyte glutathione reductase is possible in the enzyme saturated with FAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号