首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This work deals with the types of nuclear skeletal structures obtained from human fibroblast nuclei isolated by different procedures. It is confirmed that, in somatic vertebrate cells, the pore complex-lamina is always observed, whereas the presence of internal nucleolar and extranucleolar residual structures depends upon the method of nuclear isolation used. Furthermore, the results reported here argue for the existence of a nucleolar skeleton different from the nucleolar matrix often observed in different cell types by other investigators. The conditions of nuclear isolation which allow us to visualize this nucleolar skeleton without any other internal residual structures are described. The attachment of the nucleolar skeleton to the lamina suggested by the present data is considered in relation to the in situ position of nucleoli near the nuclear envelope.  相似文献   

3.
Summary The question of chromosome distribution in the mammalian nucleus is addressed, and data are provided in support of the ordered arrangement of chromosomes in the Chinese hamster spermatocyte. Testicular cells were dispersed and air-dried without prior fixation, then stained and karyotyped. The position of chromosome telomeres in 217 pachytene spermatocytes was determined in relation to four concentric rings which equally divided the nuclear area. The distribution of telomeres showed a progressive decline from the central to the peripheral rings. This was particularly pronounced for chromosomes 1–7, but was reversed for the XY chromosomes. The distribution of the total as well as of the individual chromosomes was significantly different from that expected on the basis of random distribution. The only exceptions to this were chromosomes 8–10, which exhibited random distribution. Thus, while chromosomes 1–7 had a central position, the XY pair had a peripheral localization. The mean ring position appeared to be related to chromosome length, except for the XY chromosomes, suggesting that chromosome length may determine chromosome position.  相似文献   

4.
The distribution of single-strand DNA breaks induced by various N-methyl-N-nitrosourea concentrations in S-phase of the cell cycle has been studied in Djungarian hamster fibroblast culture in the isolated samples of fractions of metaphase chromosomes of varying size. For the first time, a dose-effect relationship between the molecular mass of single-stranded DNA fragments isolated in an alkaline sucrose gradient from small chromosomes and the lack of the effect on DNA in large chromosomes has been established. The phenomenon detected is being discussed in terms of structural heterogeneity of interphase nuclear chromatin, i.e. irregular distribution of eu- and heterochromatin in small and large chromosomes. Another possible explanation is the storage of various damaged chromosome fragments in small chromosomes. The data obtained, apart from their significance for chromatin structure analysis, can serve as an experimental basis for the detection of, otherwise undetectable, postreparative molecular DNA damages.  相似文献   

5.
In seven mammalian species, including man, the position and number of nucleoli in pachytene spermatocyte nuclei were studied from electron microscope (EM) nuclear sections or bivalent microspreads. The number and position of the nucleolar organiser regions (NORs) in mitotic and meiotic chromosomes were also analysed, using silver staining techniques and in situ hybridisation protocols. The general organisation of pachytene spermatocyte nucleoli was almost the same, with only minor morphological differences between species. The terminal NORs of Thylamys elegans (Didelphoidea, Marsupialia), Dromiciops gliroides (Microbiotheridae, Marsupialia), Phyllotys osgoodi (Rodentia, Muridae) and man, always gave rise to peripheral nucleoli in the spermatocyte nucleus. In turn, the intercalated NORs from Octodon degus, Ctenomys opimus (Rodentia, Octodontidae) and Chinchilla lanigera (Rodentia, Cavidae), gave rise to central nucleoli. In species with a single nucleolar bivalent, just one nucleolus is formed, while in those with multiple nucleolar bivalents a variable number of nucleoli are formed by association of different nucleolar bivalents or NORs that occupy the same nuclear peripheral space (Phyllotis and man). It can be concluded that the position of each nucleolus within the spermatocyte nucleus is mainly dependent upon: (1) the position of the NOR in the nucleolar bivalent synaptonemal complex (SC), (2) the nuclear pathway of the nucleolar bivalent SC, being both telomeric ends attached to the nuclear envelope, and (3) the association between nucleolar bivalents by means of their NOR-nucleolar domains that occupy the same nuclear space. Thus, the distribution of nucleoli within the nuclear space of spermatocytes is non-random and it is consistent with the existence of a species-specific meiotic nuclear architecture.  相似文献   

6.
During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.  相似文献   

7.
In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.  相似文献   

8.
Karyoskeletal protein fractions prepared from Drosophila melanogaster embryos contain morphologically identifiable remnants of nuclear pore complexes and peripheral lamina as well as what appears to be an internal nuclear "matrix" (Fisher, P. A., M. Berrios, and G. Blobel, 1982, J. Cell Biol., 92: 674-686). Structural stability of these proteinaceous assemblies is dependent on thermal incubation in vitro (37 degrees C, 15 min) before subfractionation of nuclei. In the absence of such incubation, greater than 90% of the total karyoskeletal protein including major polypeptide components of internal "matrix," pore complexes, and the peripheral lamina, is solubilized by 1 M NaCl. In vivo heat shock induces karyoskeletal stabilization resembling that resulting from thermal incubation in vitro. Immunocytochemical studies have been used to establish the effects of heat shock on the organization and distribution of major karyoskeletal marker proteins in situ. Taken together, these results are consistent with the notion that in vivo, regulation of karyoskeletal plasticity (and perhaps form) may be a functionally significant component of the Drosophila heat shock response. They also have broad practical implications for studies pertaining to the structure and function of karyoskeletal protein (nuclear "matrix") fractions isolated from higher eukaryotic cells.  相似文献   

9.
10.
The nucleus is known to be compartmentalized into units of function, but the processes leading to the spatial organization of chromosomes and nuclear compartments are not yet well defined. Here we report direct quantitative analysis of the global structural perturbations of interphase chromosome and interchromosome domain distribution caused by infection with herpes simplex virus-1 (HSV-1). Our results show that the peripheral displacement of host chromosomes that correlates with expansion of the viral replication compartment (VRC) is coupled to a twofold increase in nuclear volume. Live cell dynamic measurements suggest that viral compartment formation is driven by the functional activity of viral components and underscore the significance of spatial regulation of nuclear activities.  相似文献   

11.
Nuclei isolated from Djungarian hamster fibroblasts transformed by SV40 were treated with restriction endonuclease Bsp RI, fixed on Celite columns and underwent successive gradients of dissociating agents, such as NaCl, LiCl-urea, and temperature. This procedure leads to fractionation of DNA fragments in accordance with the tightness of DNA-protein bonds in situ. The fractions obtained were analysed by agarose gel electrophoresis and dot-hybridization technique with the use of various DNA probes. The results received are as follows: a) a DNA fragment size is not a factor determining the chromatographic position, the latter is probably stipulated by DNA-protein interactions; b) an analysis of cells synchronized at the G1/S border shows that the distribution of specific DNA sequences, such as actin, histone, hsp 70, and c-Ha-ras genes as well as reiterated DNA sequences, does not coincide with that of total genomic DNA; the nuclear matrix-attached fragments of those sequences are enriched to various extents. By nick-translation labeling in situ, DNase I-sensitive and hypersensitive regions were tentatively identified among subdomain chromatin fragments.  相似文献   

12.
To define the roles of subnuclear structure in SV40 infection, the relative distribution of T-antigen (T-ag) in various subnuclear fractions obtained from both lytically infected and transformed African green monkey kidney cells was determined. Depending on the differential sensitivity of nuclear T-ag to extraction by salt and detergent, nuclear T-ag could be separated into nucleoplasmic T-ag, salt-sensitive T-ag and matrix-bound T-ag subclasses. At least fivefold less matrix-bound T-ag was found in transformed cells than in lytically infected cells. While a cAMP-independent protein kinase was detected in the nuclear matrix, the matrix-bound T-ag (94K) could not be phosphorylated in vitro. The removal of cellular chromosomes by DNase caused changes in the interaction of T-ag with nuclear components. The results suggest that the compartmentalization of nuclear T-ag may be determined by its interaction with host chromosomes.  相似文献   

13.
Specific interactions of chromatin with the nuclear envelope (NE) in early embryos of Drosophila melanogaster have been mapped and analyzed. Using fluorescence in situ hybridization, the three-dimensional positions of 42 DNA probes, primarily to chromosome 2L, have been mapped in nuclei of intact Drosophila embryos, revealing five euchromatic and two heterochromatic regions associated with the NE. These results predict that there are approximately 15 NE contacts per chromosome arm, which delimit large chromatin loops of approximately 1-2 Mb. These NE association sites do not strictly correlate with scaffold-attachment regions, heterochromatin, or binding sites of known chromatin proteins. Pairs of neighboring probes surrounding one NE association site were used to delimit the NE association site more precisely, suggesting that peripheral localization of a large stretch of chromatin is likely to result from NE association at a single discrete site. These NE interactions are not established until after telophase, by which time the nuclear envelope has reassembled around the chromosomes, and they are thus unlikely to be involved in binding of NE vesicles to chromosomes following mitosis. Analysis of positions of these probes also reveals that the interphase nucleus is strongly polarized in a Rabl configuration which, together with specific targeting to the NE or to the nuclear interior, results in each locus occupying a highly determined position within the nucleus.  相似文献   

14.
The identification of flow-sorted chromosomes is a very important tool for checking the purity of the fractions obtained. An easy and reproducible method for obtaining G-banded chromosomes with good resolution of bands is described. Also, we are able to show that the percentage of chromosomes which can be clearly distinguished by this procedure depends to a large extent on the duration of mitotic arrest. In particular when sorting chromosomes from human-rodent hybrid cell lines, the possibility of using in situ hybridization in addition to conventional staining techniques to characterize the chromosomes can help overcome the problem of highly condensed chromosomes and chromosomal fragments of unknown origin, which cannot be identified otherwise. Thus, we have developed an in situ hybridization technique, based on biotin-labelled human genomic DNA, which allows a clear distinction between human and rodent chromosomal material to be made.  相似文献   

15.
Lamins A and C bind and assemble at the surface of mitotic chromosomes   总被引:31,自引:15,他引:16       下载免费PDF全文
To study a possible interaction of nuclear lamins with chromatin, we examined assembly of lamins A and C at mitotic chromosome surfaces in vitro. When a postmicrosomal supernatant of metaphase CHO cells containing disassembled lamins A and C is incubated with chromosomes isolated from mitotic Chinese hamster ovary cells, lamins A and C undergo dephosphorylation and uniformly coat the chromosome surfaces. Furthermore, when purified rat liver lamins A and C are dialyzed with mitotic chromosomes into a buffer of physiological ionic strength and pH, lamins A and C coat chromosomes in a similar fashion. In both cases a lamin-containing supramolecular structure is formed that remains intact when the chromatin is removed by digestion with micrococcal nuclease and extraction with 0.5 M KCl. Lamins associate with chromosomes at concentrations approximately eightfold lower than the critical concentration at which they self-assemble into insoluble structures in the absence of chromosomes, indicating that chromosome surfaces contain binding sites that promote lamin assembly. These binding sites are destroyed by brief treatment of chromosomes with trypsin or micrococcal nuclease. Together, these data suggest the existence of a specific lamin-chromatin interaction in cells that may be important for nuclear envelope reassembly and interphase chromosome structure.  相似文献   

16.
Biochemical fractionation was combined with high resolution electron microscopic autoradiography to study the localization in rat liver nuclear matrix of attached DNA fragments, in vivo replicated DNA, and in vitro synthesized DNA. In particular, we determined the distribution of these DNA components with the peripheral nuclear lamina versus more internally localized structural elements of isolated nuclear matrix. Autoradiography demonstrated that the bulk of in vivo newly replicated DNA associated with the nuclear matrix (71%) was found within internal matrix regions. A similar interior localization was observed in isolated nuclei and in situ in whole liver tissue. Likewise, isolated nuclear lamina contained only a small amount (12%) of the total matrix-bound, newly replicated DNA. The structural localization of matrix-bound DNA fragments was examined following long-term in vivo labeling of the DNA. The radioactive DNA fragments were found predominantly within interior regions of the matrix structure (77%), and isolated nuclear lamina contained less than 15% of the total nuclear matrix-associated DNA. Most of the endogenous DNA template sites for the replicative enzyme DNA polymerase alpha (approximately 70%) were also sequestered within interior regions of the matrix. In contrast, a majority of the endogenous DNA template sites for DNA polymerase beta (a presumptive repair enzyme) were closely associated with the peripheral nuclear lamina. A similar spatial distribution for both polymerase activities was measured in isolated nuclei before matrix fractionation. Furthermore, isolated nuclear lamina contained only a small proportion of total matrix-bound DNA polymerase alpha endogenous and exogenous template activities (3-12%), but a considerable amount of the corresponding beta polymerase activities (47-52%). Our results support the hypothesis that DNA loops are both anchored and replicated at nuclear matrix-bound sites that are predominantly but not exclusively associated with interior components of the matrix structure. Our results also suggest that the sites of nuclear DNA polymerase beta-driven DNA synthesis are uniquely sequestered within the characteristic peripheral heterochromatin shell and associated nuclear envelope structure, where they may potentially participate in DNA repair and/or replicative functions.  相似文献   

17.
Summary The in situ spatial distribution of nucleolus-organizing-region (NOR) bearing chromosomes in relation to the inactive X chromosome was studied during interphase in human fibroblasts. The respective positions of these chromosomes were examined in 30 growing and 32 resting fibroblasts from reconstructed nuclei, using nucleoli and the Barr body as ultrastructural markers. Experimental values for the distance between the nucleoli and the Barr body were estimated by their coefficient of closeness and compared to the uniform distribution. The following results were obtained: (1) the distribution patterns for the two populations of nuclei were similar, (2) the distribution of the NOR-bearing chromosomes in relation to the inactive X chromosome varied and differed significantly from a uniform distribution, and (3) in many cases the Barr body was observed to be in a juxta-nucleolar position. The internal distribution revealed by this study is compared with the data in the literature, especially with the conflicting data obtained by other methods used to determine the interphase arrangement of chromosomes. The relationship between interphase and metaphase arrangements such as can be deduced with these methods, is discussed in relation to the mechanisms of the formation of metaphase plates or chromatid translocations.  相似文献   

18.
Gene expression can be silenced by proximity to heterochromatin blocks containing centromeric alpha-satellite DNA. This has been shown experimentally through cis-acting chromosome rearrangements resulting in linear genomic proximity, or through trans-acting changes resulting in intranuclear spatial proximity. Although it has long been been established that centromeres are nonrandomly distributed during interphase, little is known of what determines the three-dimensional organization of these silencing domains in the nucleus. Here, we propose a model that predicts the intranuclear positioning of centromeric heterochromatin for each individual chromosome. With the use of fluorescence in situ hybridization and confocal microscopy, we show that the distribution of centromeric alpha-satellite DNA in human lymphoid cells synchronized at G(0)/G(1) is unique for most individual chromosomes. Regression analysis reveals a tight correlation between nuclear distribution of centromeric alpha-satellite DNA and the presence of G-dark bands in the corresponding chromosome. Centromeres surrounded by G-dark bands are preferentially located at the nuclear periphery, whereas centromeres of chromosomes with a lower content of G-dark bands tend to be localized at the nucleolus. Consistent with the model, a t(11; 14) translocation that removes G-dark bands from chromosome 11 causes a repositioning of the centromere, which becomes less frequently localized at the nuclear periphery and more frequently associated with the nucleolus. The data suggest that "chromosomal environment" plays a key role in the intranuclear organization of centromeric heterochromatin. Our model further predicts that facultative heterochromatinization of distinct genomic regions may contribute to cell-type specific patterns of centromere localization.  相似文献   

19.
Multicolor 3D fluorescence in situ hybridization was used to study arrangement of rRNA genes in Calliphora erythrocephala nurse cell nuclei with different levels of polyteny. It has been shown that the rRNA genes are exclusively localized to chromosome 6, suggesting that chromosome 6 is the only C. erythrocephala chromosome responsible for nucleolar formation. We have also described changes in localization of ribosomal genes within the chromosome territory during polytenization, namely, that rDNA signals are detected in the peripheral region of chromosome territory starting from the stage of polytene chromosomes. In addition, it has emerged that large nucleolus associated with chromosome 6 starts to develop in the central nuclear region in the C. erythrocephala nurse cell nuclei at the stage of a primary reticular structure. The central position and nucleolar structure are retained at the stages when chromosome 6 occupies the central position, that is, at the stages of polytene and bloblike chromosomes. When the nucleus restores a reticular structure but at a higher polyteny level, the displacement of chromosome 6 to the nuclear periphery is accompanied by disruption of the large nucleolus into micronucleoli. The micronucleoli are distributed in the nuclear space retaining their association with the nucleolar-organizing regions of chromosome 6. Thus, our data suggest that the large-scale alterations in the organization of chromosome 6 and the nucleolus during polytenization are the correlated processes directly dependent on the rRNA gene activity. The earlier described dynamics of nucleolar-organizing chromosome territory and nucleolus in the nuclear space is likely to be associated with the change in the total expression activity of the nucleus, which complies with the hypothesis on the correlation between spatial nuclear organization and expression regulation of genetic material.  相似文献   

20.
We have developed a method by which nuclear shells containing nucleoli can be isolated from membrane-depleted rat liver nuclei. This method involves the removal of the internal chromatin. This chromatin is expelled from the nuclear shell using combinations of low and high ionic strength buffers. The expelled internal part is subsequently digested with DNase I or micrococcal nuclease. Examination by electron microscopy of the nuclear and the nucleolar structures at various steps of the isolation procedure shows that the nucleoli are anchored in the peripheral lamina by a pedicle that is continuous with an intranucleolar network. This network is masked in situ by nucleolar granules. The pedicle and the network which support the nucleolar DNA are composed mainly of non-histone proteins insoluble in 2M NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号