首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
双链断裂(double strand breaks,DSBs)是细胞染色体复制过程中经常出现的DNA损伤,它的修复过程顺真核生物中以同源重组(homology recombination,HR)修复为主。正常机体中有着一系列的基因和蛋白及时修复复这些损伤,这些蛋白归属于RAD52上位性集团(RAD52epistasis group)。它们对细胞发挥功能和维持生存意义重大,近来国外研究十分活跃。  相似文献   

2.
DNA双链断裂损伤修复系统研究进展   总被引:4,自引:1,他引:3  
多种内源或外源因素都能造成细胞基因组DNA损伤,细胞内建立了复杂的修复系统来应对不同形式的损伤。其中DNA双链断裂(DNA double-strand breaks,DSBs)作为最严重的损伤形式,主要激活同源重组修复(Homologous recombination repair)和非同源末端连接(Non-homologous end joining)通路。这两条通路都是由多个修复元件参与、经过多步反应的复杂过程。两者各具特点、协同作用,共同维护细胞基因组的稳定性。对其分子机制的阐明为肿瘤放化疗的辅助治疗提供了潜在的作用靶点。  相似文献   

3.
植物DNA双链断裂修复的保守性和特异性   总被引:1,自引:1,他引:0  
文章概述了植物DNA双链断裂(double-strand break,DSB)修复的研究进展。从酵母、脊椎动物、植物在此领域已取得的成果来看,真核生物DSB修复在过程和参与蛋白方面均有一定的进化保守性;另一方面,植物的DSB修复有其特异之处。  相似文献   

4.
蛋白激酶CK2(酪蛋白激酶Ⅱ)是真核细胞中普遍存在的一种信使非依赖的丝氨酸/苏氨酸蛋白激酶,它底物众多,功能广泛。DNA断裂修复是一个涉及很多种酶和蛋白的过程,CK2在其中起着很重要的作用。  相似文献   

5.
DNA的精确复制和遗传对维持基因组稳定性有重要作用。DNA双链断裂损伤可能诱导细胞凋亡和染色质重排,在肿瘤的发生发展过程中发挥作用。53BP1是DNA双链断裂修复中的重要调节蛋白质之一,对调控损伤修复平衡和维持基因组稳定性起着重要作用。本文主要对53BP1的结构、生物学功能、信号通路、分子机制和翻译后修饰做一浅显的总结和展望,希望能为53BP1的深入研究提供一些理论基础。  相似文献   

6.
碳离子诱导的DNA双链断裂   总被引:6,自引:2,他引:6  
DNA双链断裂(DSBs)是电离辐射诱导的最重要的原发损伤,研究DSBs有利于揭示细胞辐射敏感性的机理。用倒转脉冲场凝胶电泳结合荧光扫描进行DNA定量研究75MeV/u12C6+对小鼠B16黑色素瘤细胞DSBs的诱导,结果表明:DSBs产额约为0.74DSBs/100Mbp/Gy;DNA片段分布在两个区域。大片段区分子量约为1.4Mbp~3.2Mbp,分子量小于1.2Mbp的为小片段区;并且随着剂量的增加,大片段区DNA含量逐渐下降,而小片段区的DNA含量显著增加。表明B16DNA分子上可能存在对重离子较为敏感的位点。  相似文献   

7.
在大鼠晶状体器官培养的条件下,运用单细胞电泳法(SCG),对远在晶状体混浊之前的晶状体上皮细胞进行了有关TNT致其DNA损伤(SSB)与修复的初步观察。提示DNA损伤也是体外TNT性白内障中的早期变化。  相似文献   

8.
黄敏  杨业然  孙晓艳  张婷  郭彩霞 《遗传》2018,40(11):1007-1014
REV1是跨损伤聚合酶Y家族的重要成员之一,它不仅作为支架蛋白介导Y家族聚合酶招募至损伤位点完成跨损伤DNA合成(translesion DNA synthesis, TLS),还可利用自身的dCMP转移酶活性在一些损伤位点对侧整合dCMP参与TLS。此外,REV1也被报导参与调控同源重组修复。为进一步探讨REV1互作蛋白RAD51和RAD51C在其参与的同源重组修复通路中的调控作用,本研究采用脉冲氮激光微辐射实验,发现RAD51可调控REV1到双链断裂位点的募集。同时,免疫荧光实验结果证明REV1也反过来影响RAD51应答CPT损伤。然而敲低RAD51C并不影响REV1到DNA双链断裂位点的招募。结果表明,REV1和RAD51在HR通路中存在彼此相互调控的关系。  相似文献   

9.
唐子执  刘聪  曾鸣 《生命科学》2014,(11):1172-1175
在各种DNA损伤中,DNA双链断裂(double-strand break,DSB)是最为严重的一种,快速准确地修复DSB对维持基因组稳定性起着至关重要的作用。真核生物细胞通过一系列复杂的信号转导途径激活对DSB的修复,其中最为重要的是同源重组和非同源末端连接机制。最近的研究表明,这两种方式在DSB修复的早期是相互竞争的关系,其选择在很大程度上受到53BP1及同源蛋白质的调控。将讨论53BP1作为DSB修复途径的核心因子,在染色质水平整合BRCA1、Ct IP等修复因子和多种组蛋白修饰构成的信号途径,介导同源重组和非同源末端连接通路选择的分子机制。  相似文献   

10.
DNA双链断裂(double strand break,DSB)是一种导致基因组不稳定性的高毒性损伤,可引起染色质畸变诱发癌症.真核生物中演化出多条保守的DSB损伤修复途径,其中最重要的修复途径是典型的非同源末端连接(clas-sical non-homologous end joining,cNHEJ)和同源重组(h...  相似文献   

11.
12.
DNA DSBs are formed in normal human IMR-90 cells during repair incubation after 100 and 300 J·m?2 of UVL. By contrast, no DSBs are formed after UVL in human XPA cells that are unable to excise pyrimidine dimers. The DSBs are not due to immediate cell death since all the cells excluded trypan blue at the time of assay and because XPA cells, which are much more UVL-sensitive than IMR-90, did not form DSBs after UVL. We suggest that these repair-induced DSBs should be potent lesions that might lead to cytotoxicity, chromosome aberrations, deletion mutations, and perhaps cellular transformation, transformation.  相似文献   

13.
14.
15.
Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.  相似文献   

16.
DNA双链断裂(DNA double-strand breaks, DSBs)是威胁基因组完整性和细胞存活的最有害的DNA损伤类型。同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)是修复DNA双链断裂的两种主要途径。DSB修复涉及到损伤部位修复蛋白的募集和染色质结构的改变。在DNA双链断裂诱导下,染色质结构的动态变化在时间和空间上受到严格调控,进而对DNA双链断裂修复过程进行精细调节。特定的染色质修饰形成利于修复的染色质状态,有助于DNA双链断裂修复机器的招募、修复途径的选择和DNA损伤检查点的活化;其中修复途径的选择对于基因组稳定性至关重要。修复不当或失败可导致基因组不稳定性,甚至促进肿瘤的发生。本文综述了染色质结构和染色质修饰的动态变化在DSB修复中的重要作用。此外,文章还总结了在癌症治疗中靶向关键染色质调控因子在基因组稳定性维持、肿瘤发生发展以及潜在临床应用价值等方面的进展。  相似文献   

17.
DNA double-strand breaks are the most dangerous DNA lesions that may lead to massive loss of genetic information and cell death. Cells repair DSBs using two major pathways: nonhomologous end joining (NHEJ) and homologous recombination (HR). Perturbations of NHEJ and HR are often associated with premature aging and tumorigenesis, hence it is important to have a quantitative way of measuring each DSB repair pathway. Our laboratory has developed fluorescent reporter constructs that allow sensitive and quantitative measurement of NHEJ and HR. The constructs are based on an engineered GFP gene containing recognition sites for a rare-cutting I-SceI endonuclease for induction of DSBs. The starting constructs are GFP negative as the GFP gene is inactivated by an additional exon, or by mutations. Successful repair of the I-SceI-induced breaks by NHEJ or HR restores the functional GFP gene. The number of GFP positive cells counted by flow cytometry provides quantitative measure of NHEJ or HR efficiency.Download video file.(82M, mov)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号