首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Acute pancreatitis is a life-threatening inflammatory disease characterized by abdominal pain of unknown etiology. Trypsin, a key mediator of pancreatitis, causes inflammation and pain by activating protease-activated receptor 2 (PAR(2)), but the isoforms of trypsin that cause pancreatitis and pancreatic pain are unknown. We hypothesized that human trypsin IV and rat P23, which activate PAR(2) and are resistant to pancreatic trypsin inhibitors, contribute to pancreatic inflammation and pain. Injections of a subinflammatory dose of exogenous trypsin increased c-Fos immunoreactivity, indicative of spinal nociceptive activation, but did not cause inflammation, as assessed by measuring serum amylase and myeloperoxidase activity and by histology. The same dose of trypsin IV and P23 increased some inflammatory end points and caused a more robust effect on nociception, which was blocked by melagatran, a trypsin inhibitor that also inhibits polypeptide-resistant trypsin isoforms. To determine the contribution of endogenous activation of trypsin and its minor isoforms, recombinant enterokinase (ENK), which activates trypsins in the duodenum, was administered into the pancreas. Intraductal ENK caused nociception and inflammation that were diminished by polypeptide inhibitors, including soybean trypsin inhibitor and a specific trypsin inhibitor (type I-P), and by melagatran. Finally, the secretagogue cerulein induced pancreatic nociceptive activation and nocifensive behavior that were reversed by melagatran. Thus trypsin and its minor isoforms mediate pancreatic pain and inflammation. In particular, the inhibitor-resistant isoforms trypsin IV and P23 may be important in mediating prolonged pancreatic inflammatory pain in pancreatitis. Our results suggest that inhibitors of these isoforms could be novel therapies for pancreatitis pain.  相似文献   

2.
Trypsin IV, a novel agonist of protease-activated receptors 2 and 4   总被引:11,自引:0,他引:11  
Certain serine proteases signal to cells by cleaving protease-activated receptors (PARs) and thereby regulate hemostasis, inflammation, pain and healing. However, in many tissues the proteases that activate PARs are unknown. Although pancreatic trypsin may be a physiological agonist of PAR(2) and PAR(4) in the small intestine and pancreas, these receptors are expressed by cells not normally exposed pancreatic trypsin. We investigated whether extrapancreatic forms of trypsin are PAR agonists. Epithelial cells lines from prostate, colon, and airway and human colonic mucosa expressed mRNA encoding PAR(2), trypsinogen IV, and enteropeptidase, which activates the zymogen. Immunoreactive trypsinogen IV was detected in vesicles in these cells. Trypsinogen IV was cloned from PC-3 cells and expressed in CHO cells, where it was also localized to cytoplasmic vesicles. We expressed trypsinogen IV with an N-terminal Igkappa signal peptide to direct constitutive secretion and allow enzymatic characterization. Treatment of conditioned medium with enteropeptidase reduced the apparent molecular mass of trypsinogen IV from 36 to 30 kDa and generated enzymatic activity, consistent with formation of trypsin IV. In contrast to pancreatic trypsin, trypsin IV was completely resistant to inhibition by polypeptide inhibitors. Exposure of cell lines expressing PAR(2) and PAR(4) to trypsin IV increased [Ca(2+)](i) and strongly desensitized cells to PAR agonists, whereas there were no responses in cells lacking these receptors. Thus, trypsin IV is a potential agonist of PAR(2) and PAR(4) in epithelial tissues where its resistance to endogenous trypsin inhibitors may permit prolonged signaling.  相似文献   

3.
Trypsin activating both proteinase-activated receptor (PAR) 2 and PAR4 plays an important role in inflammation. We have investigated the potential of trypsin to induce TNF-alpha secretion from the human leukemic mast cell line (HMC-1). HMC-1 cells co-express both PAR2 and PAR4, and their agonist trypsin signals to HMC-1 cells. Trypsin (100 nm), SLIGKV-NH(2) (100 microm, corresponding to the PAR2 tethered ligand), or GYPGQV-NH(2) (100 microm, corresponding to the PAR4 tethered ligand) induced tumour necrosis factor (TNF)-alpha secretion from HMC-1 cells. TNF-alpha secretion by trypsin was significantly blocked by pretreatment with 50 microm PD098059, MEK-1 inhibitor. Furthermore, trypsin stimulated the activation of extracellular signal-regulated kinase (ERK) in HMC-1 cells without any detectable activation of c-Jun N-terminal kinase (JNK) and p38 MAP kinase homologue. These results show that trypsin may induce TNF-alpha secretion following activation of ERK via both PAR2 and PAR4 on HMC-1 cells.  相似文献   

4.
Proteases, like thrombin, trypsin, cathepsins, or tryptase, can signal to cells by cleaving in a specific manner, a family of G protein-coupled receptors, the protease-activated receptors (PARs). Proteases cleave the extracellular N-terminal domain of PARs to reveal tethered ligand domains that bind to and activate the receptors. Recent evidence has supported the involvement of PARs in inflammation and pain. Activation of PAR(1), PAR(2), and PAR(4) either by proteinases or by selective agonists causes inflammation inducing most of the cardinal signs of inflammation: swelling, redness, and pain. Recent studies suggest a crucial role for the different PARs in innate immune response. The role of PARs in the activation of pain pathways appears to be dual. Subinflammatory doses of PAR(2) agonists induce hyperalgesia and allodynia, and PAR(2) activation has been implicated in the generation of inflammatory hyperalgesia. In contrast, subinflammatory doses of PAR(1) or PAR(4) increase nociceptive threshold, inhibiting inflammatory hyperalgesia, thereby acting as analgesic mediators. PARs have to be considered as an additional subclass of G protein-coupled receptors that are active participants to inflammation and pain responses and that could constitute potential novel therapeutic targets.  相似文献   

5.
6.
Hemostasis is a defense mechanism which protects the organism in the event of injury to stop bleeding. Recently, we established that all the known major mammalian hemostatic factors are conserved in early vertebrates. However, since their highly vascularized gills experience high blood pressure and are exposed to the environment, even very small injuries could be fatal to fish. Since trypsins are forerunners for coagulation proteases and are expressed by many extrapancreatic cells such as endothelial cells and epithelial cells, we hypothesized that trypsin or trypsin-like proteases from gill epithelial cells may protect these animals from gill bleeding following injuries. In this paper we identified the release of three different trypsins from fish gills into water under stress or injury, which have tenfold greater serine protease activity compared to bovine trypsin. We found that these trypsins activate the thrombocytes and protect the fish from gill bleeding. We found 27 protease-activated receptors (PARs) by analyzing zebrafish genome and classified them into five groups, based on tethering peptides, and two families, PAR1 and PAR2, based on homologies. We also found a canonical member of PAR2 family, PAR2-21A which is activated more readily by trypsin, and PAR2-21A tethering peptide stops gill bleeding just as trypsin. This finding provides evidence that trypsin cleaves a PAR2 member on thrombocyte surface. In conclusion, we believe that the gills are evolutionarily selected to produce trypsin to activate PAR2 on thrombocyte surface and protect the gills from bleeding. We also speculate that trypsin may also protect the fish from bleeding from other body injuries due to quick contact with the thrombocytes. Thus, this finding provides evidence for the role of trypsins in primary hemostasis in early vertebrates.  相似文献   

7.
This paper describes the development of galactosidase protease-activated receptor (GPAR) as a recombinant protein obtained by fusion of beta-galactosidase, the extracellular domains of protease-activated receptors (PARs), and a biotin acceptor domain. Used as an immobilized substrate, this protein allows the detection of thrombin in the sub-picomolar range. A comparative analysis for proteolytic cleavage of murine PAR1, PAR2, and PAR3 and human PAR4 was performed, involving mutated and nonmutated GPAR fusion proteins. Thrombin cleaved GPAR1 (2.6 mol(beta-galactosidase)/(mol(thrombin) * min)), GPAR3 (410 mmol(beta-galactosidase)/(mol(thrombin) * min)), and GPAR4 (4.3 mmol(beta-galactosidase)/(mol(thrombin) * min)) specifically at the proteolytic activation site. A second possible cleavage site for thrombin is present in murine PAR1 and PAR3. Trypsin and plasmin cleaved all receptor fusion proteins with little specificity for the activation site, except for a marked preference of trypsin for cleavage at the activation site of GPAR2. Chymotrypsin cleaves GPAR1 at a rate (58 mmol(beta-galactosidase)/(mol(thrombin) * min)) that suggests the possibility of chymotryptic inactivation of PAR1. Elastase may inactivate PAR1 and PAR3, but probably not PAR2 and PAR4. Neither activated protein C nor the plasminogen activators cleave any GPAR fusion protein at considerable rates.  相似文献   

8.
Proteases cleave proteinase-activated receptors (PARs) to expose N-terminal tethered ligands that bind and activate the cleaved receptors. The tethered ligand, once exposed, is always available to interact with its binding site. Thus, efficient mechanisms must prevent continuous activation, including receptor phosphorylation and uncoupling from G-proteins, receptor endocytosis, and lysosomal degradation. beta-Arrestins mediate uncoupling and endocytosis of certain neurotransmitter receptors, which are activated in a reversible manner. However, the role of beta-arrestins in trafficking of PARs, which are irreversibly activated, and the effects of proteases on the subcellular distribution of beta-arrestins have not been examined. We studied trafficking of PAR2 and beta-arrestin1 coupled to green fluorescent protein. Trypsin induced the following: (a) redistribution of beta-arrestin1 from the cytosol to the plasma membrane, where it co-localized with PAR2; (b) internalization of beta-arrestin1 and PAR2 into the same early endosomes; (c) redistribution of beta-arrestin1 to the cytosol concurrent with PAR2 translocation to lysosomes; and (d) mobilization of PAR2 from the Golgi apparatus to the plasma membrane. Overexpression of a C-terminal fragment of beta-arrestin-319-418, which interacts constitutively with clathrin but does not bind receptors, inhibited agonist-induced endocytosis of PAR2. Our results show that beta-arrestins mediate endocytosis of PAR2 and support a role for beta-arrestins in uncoupling of PARs.  相似文献   

9.
Protease-activated receptors (PARs) mediate cell activation after proteolytic cleavage of their extracellular amino terminus. Thrombin selectively cleaves PAR1, PAR3, and PAR4 to induce activation of platelets and vascular cells, while PAR2 is preferentially cleaved by trypsin. In pathological situations, other proteolytic enzymes may be generated in the circulation and could modify the responses of PARs by cleaving their extracellular domains. To assess the ability of such proteases to activate or inactivate PARs, we designed a strategy for locating cleavage sites on the exofacial NH(2)-terminal fragments of the receptors. The first extracellular segments of PAR1 (PAR1E) and PAR2 (PAR2E) expressed as recombinant proteins in Escherichia coli were incubated with a series of proteases likely to be encountered in the circulation during thrombosis or inflammation. Kinetic and dose-response studies were performed, and the cleavage products were analyzed by MALDI-TOF mass spectrometry. Thrombin cleaved PAR1E at the Arg41-Ser42 activation site at concentrations known to induce cellular activation, supporting a native conformation of the recombinant polypeptide. Plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3 cleaved at multiple sites and would be expected to disable PAR1 by cleaving COOH-terminal to the activation site. Cleavage specificities were further confirmed using activation site defective PAR1E S42P mutant polypeptides. Surface plasmon resonance studies on immobilized PAR1E or PAR1E S42P were consistent with cleavage results obtained in solution and allowed us to determine affinities of PAR1E-thrombin binding. FACS analyses of intact platelets confirmed the cleavage of PAR1 downstream of the Arg41-Ser42 site. Mass spectrometry studies of PAR2E predicted activation of PAR2 by trypsin through cleavage at the Arg36-Ser37 site, no effect of thrombin, and inactivation of the receptor by plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3. The inhibitory effect of elastase was confirmed on native PAR1 and PAR2 on the basis of Ca(2+) signaling studies in endothelial cells. It was concluded that none of the main proteases generated during fibrinolysis or inflammation appears to be able to signal through PAR1 or PAR2. This strategy provides results which can be extended to the native receptor to predict its activation or inactivation, and it could likewise be used to study other PARs or protease-dependent processes.  相似文献   

10.
11.
We tested the hypothesis that human tissue kallikreins (hKs) may regulate signal transduction by cleaving and activating proteinase-activated receptors (PARs). We found that hK5, 6 and 14 cleaved PAR N-terminal peptide sequences representing the cleavage/activation motifs of human PAR1 and PAR2 to yield receptor-activating peptides. hK5, 6 and 14 activated calcium signalling in rat PAR2-expressing (but not background) KNRK cells. Calcium signalling in HEK cells co-expressing human PAR1 and PAR2 was also triggered by hK14 (via PAR1 and PAR2) and hK6 (via PAR2). In isolated rat platelets that do not express PAR1, but signal via PAR4, hK14 also activated PAR-dependent calcium signalling responses and triggered aggregation. The aggregation response elicited by hK14 was in contrast to the lack of aggregation triggered by hK5 and 6. hK14 also caused vasorelaxation in a phenylephrine-preconstricted rat aorta ring assay and triggered oedema in an in vivo model of murine paw inflammation. We propose that, like thrombin and trypsin, the kallikreins must now be considered as important 'hormonal' regulators of tissue function, very likely acting in part via PARs.  相似文献   

12.
Protease-activated receptors (PARs) are a unique class of G protein-coupled receptors, which are activated by proteolytic cleavage of the amino terminus of the receptor itself. PARs are most likely involved in various biological responses, such as hemostasis and regulation of muscle tone; however, the roles of PARs in the functions of inflammatory and immune cells are poorly understood. Because eosinophils are most likely involved in allergic inflammation and are exposed to a variety of proteases derived from allergens and other inflammatory cells, we investigated whether PARs regulate effector functions of eosinophils. Human eosinophils constitutively transcribe mRNA for PAR2 and PAR3, but not those for PAR1 and PAR4. The expression of PAR2 protein was confirmed by flow cytometry. When trypsin, an agonist for PAR2, was incubated with eosinophils, it potently induced superoxide anion production and degranulation; 5 nM trypsin induced responses that were 50-70% of those induced by 100 nM platelet-activating factor, a positive control. In contrast, thrombin, an activator for PAR1, PAR3, and PAR4, showed minimal effects. The stimulatory effect of trypsin was dependent on its serine protease activity and was blocked 59% by anti-PAR2 Ab. Furthermore, a specific tethered peptide ligand for PAR2 potently induced superoxide production and degranulation; the effects of peptide ligands for PAR1, PAR3, and PAR4 were negligible. These findings suggest that human eosinophils express functional PAR2, and serine proteases at the inflammation site may play important roles in regulating effector functions of human eosinophils. The expression and functional relevance of other PARs still need to be determined.  相似文献   

13.
Recent advances in basic science pointed to a role for proteinases, through the activation of proteinase-activated receptors (PARs) in nociceptive mechanisms. Activation of PAR1, PAR2 and PAR4 either by proteinases or by selective agonists causes inflammation inducing most of the cardinal signs of inflammation: swelling, redness, and pain. Sub-inflammatory doses of PAR2 agonist still induced hyperalgesia and allodynia while PAR2 has been shown to be implicated in the generation of hyperalgesia in different inflammatory models. In contrast, sub-inflammatory doses of PAR1 increases nociceptive threshold, inhibiting inflammatory hyperalgesia, thereby acting as an analgesic agent. PARs are present and functional on sensory neurons, where they participate either directly or indirectly to the transmission and/or inhibition of nociceptive messages. Taken together, the results discussed in this review highlight proteinases as signaling molecules to sensory nerves. We need to consider proteinases and the receptors that are activated by proteinases as important potential targets for the development of analgesic drugs in the treatment of inflammatory pain.  相似文献   

14.
Recent studies have shown that a novel class of protease activated receptors (PARs), which are composed of seven transmembrane G protein-coupled domains, are activated by serine proteases such as thrombin, trypsin and tryptase. Although four types (PAR 1, PAR 2, PAR 3 and PAR 4) of this class of receptors have been identified, their discrete physiological and pathological roles are still being unraveled. Extracellular proteolytic activation of PARs results in the cleavage of specific sites in the extracellular domain and formation of a new N-terminus which functions as a tethered ligand. The newly formed tethered ligand binds intramolecularly to an exposed site in the second transmembrane loop and triggers G-protein binding and intracellular signaling. Recent studies have shown that PAR-1, PAR-2 and PAR-4 have been involved in vascular development and a variety of other biological processes including apoptosis and remodeling. The use of animal model systems, mainly transgenic mice and synthetic tethered ligand domains, have contributed enormously to our knowledge of molecular signaling and the regulatory properties of various PARs in cardiomyocytes. This review focuses on the role of PARs in cardiovascular function and disease.  相似文献   

15.
Proteinases such as thrombin and trypsin can affect tissues by activating a novel family of G protein-coupled proteinase-activated receptors (PARs 1-4) by exposing a 'tethered' receptor-triggering ligand (TL). Work with synthetic TL-derived PAR peptide sequences (PAR-APs) that stimulate PARs 1, 2 and 4 has shown that PAR activation can play a role in many tissues, including the gastrointestinal tract, kidney, muscle, nerve, lung and the central and peripheral nervous systems, and can promote tumor growth and invasion. PARs may play roles in many settings, including cancer, arthritis, asthma, inflammatory bowel disease, neurodegeneration and cardiovascular disease, as well as in pathogen-induced inflammation. In addition to activating or disarming PARs, proteinases can also cause hormone-like effects via PAR-independent mechanisms, such as activation of the insulin receptor. In addition to proteinases of the coagulation cascade, recent data suggest that members of the family of kallikrein-related peptidases (KLKs) represent endogenous PAR regulators. In summary: (1) proteinases are like hormones, signaling in a paracrine and endocrine manner via PARs or other mechanisms; (2) KLKs must now be seen as potential hormone-like PAR regulators in vivo; and (3) PAR-regulating proteinases, their target PARs, and their associated signaling pathways appear to be novel therapeutic targets.  相似文献   

16.
1. Two trypsin-like enzymes, designated Trypsin A and B, were purified from the pyloric caeca and intestine of anchovy by (NH4)2SO4 fractionation, affinity chromatography (Benzamidine-Sepharose-6B) and ion exchange chromatography (DEAE-Sepharose). 2. Both trypsins catalyzed the hydrolysis of N-benzoyl-DL-arginine p-nitroanilide (BAPNA), p-tosyl-L-arginine methyl ester (TAME), casein and myofibrillar protein and they were inhibited by several well established trypsin-inhibitors. 3. The enzymes had mol. wts of 27,000 (Trypsin A) and 28,000 (Trypsin B). Their isoelectric points were about 4.9 (Trypsin A) and 4.6 (Trypsin B) and they had similar amino acid composition. 4. The enzymes had a pH optimum of 8-9 for the hydrolysis of BAPNA and of 9.5 for the digestion of casein and myofibrillar protein. Their activity and stability were affected by calcium ions. 5. Trypsins A and B resemble other fish trypsins in their mol. wt, pI, kinetic properties and the instability at low pH and they are similar to bovine trypsin in their dependence of Ca2+ for activity and stability.  相似文献   

17.
Serine proteinases, like trypsin, can play a hormone-like role by triggering signal transduction pathways in target cells. In many respects these hormone-like actions of proteinases can now be understood in terms of the pharmacodynamics of the G protein-coupled 'receptor' responsible for the cellular actions of thrombin (proteinase-activated receptor-1, or PAR1). PAR1, like the other three members of this receptor family (PAR2, PAR3 and PAR4), has a unique mechanism of activation involving the proteolytic unmasking of an N-terminally tethered sequence that can activate the receptor. The selective activation of each PAR by short synthetic peptides representing these sequences has demonstrated that PAR1, PAR2 and PAR4 play important roles in regulating physiological responses ranging from vasoregulation and cell growth to inflammation and nociception. We hypothesise that the tissue kallikreins may regulate signal transduction via the PARs. Although PARs can account for many of their biological actions, kallikreins may also cause effects by mechanisms not involving the PARs. For instance, trypsin activates the insulin receptor and thrombin can act via a mechanism involving its non-catalytic domains. Based on the data we summarise, we propose that the kallikreins, like thrombin and trypsin, must now be considered as important 'hormonal' regulators of tissue function.  相似文献   

18.
Protease activated receptors in cardiovascular function and disease   总被引:1,自引:0,他引:1  
Recent studies have shown that a novel class of protease activated receptors (PARs), which are composed of seven transmembrane G protein-coupled domains, are activated by serine proteases such as thrombin, trypsin and tryptase. Although four types (PAR 1, PAR 2, PAR 3 and PAR 4) of this class of receptors have been identified, their discrete physiological and pathological roles are still being unraveled. Extracellular proteolytic activation of PARs results in the cleavage of specific sites in the extracellular domain and formation of a new N-terminus which functions as a tethered ligand. The newly formed tethered ligand binds intramolecularly to an exposed site in the second transmembrane loop and triggers G-protein binding and intracellular signaling. Recent studies have shown that PAR-1, PAR-2 and PAR-4 have been involved in vascular development and a variety of other biological processes including apoptosis and remodeling. The use of animal model systems, mainly transgenic mice and synthetic tethered ligand domains, have contributed enormously to our knowledge of molecular signaling and the regulatory properties of various PARs in cardiomyocytes. This review focuses on the role of PARs in cardiovascular function and disease. (Mol Cell Biochem 263: 227–239, 2004)  相似文献   

19.
Thrombin and trypsin induce cell signaling through a subclass of G-protein-coupled receptors called the protease-activated receptors (PARs). In many cells, PAR signaling results in the activation of RhoA and other members of the Rho family of small GTPases which are involved in cytoskeletal reorganization. The expression of PARs and their role in the activation of Rho GTPases in prostate cancer cells are not clearly known. FACS analysis demonstrated that the androgen-dependent LNCaP cells express PAR1, PAR2, and PAR4 but not PAR3. Stimulation with thrombin and trypsin resulted in the rapid activation of RhoA in a dose-dependent manner with an EC(50) of 1.0 and 5 nM, respectively. Activation of RhoA was enhanced by, but not dependent on, the presence of 1 nM dihydrotestosterone. Inhibition of the proteolytic properties of thrombin by hirudin and trypsin by diisopropyl fluorophosphate abolished the observed RhoA activation. Stimulation with 150 microM PAR-activating peptides TFFLRN (PAR1), SLIGKV (PAR2), and AYPGKF (PAR4) demonstrated that PAR1 and PAR2 mediated protease-activated RhoA signaling. Fluorescent microscopy studies showed that LNCaP cells treated with either thrombin (10 nM) or trypsin (10 nM) developed an increased number of filopodia, stress fibers, and focal adhesions relative to untreated cells. These observations represent the first report of PAR signaling in prostate cancer cells as well as the ability of PAR2 to mediate RhoA activation. Since the activation of RhoA is important for cytoskeletal reorganization, we postulate that PAR-mediated RhoA activation may be a major signaling pathway in the biology of prostate cancer.  相似文献   

20.
蛋白酶激活受体(protease-activated receptor,PAR)属于G蛋白偶联受体家族,包括4个成员,除PAR2为胰蛋白酶受体外,其他三个都是凝血酶受体,PAR通过形成或暴露新的N末端被激活。PAR广泛表达于全身各组织,尤其在消化系统表现出多种功能;通过促进细胞增殖、迁移、浸润、血管生成以及组织重构(通过促进细胞增殖、迁移、浸润和血管生成),同时抑制细胞的分化和凋亡等因素参与肿瘤的发生和发展,这为临床诊治和预后评判提供了有力的手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号