首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tammam SD  Rochet JC  Fraser ME 《Biochemistry》2007,46(38):10852-10863
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), reflecting a conformational change of SCOT upon formation of the thioester. Since either Cys 28 or Cys 196 could be the target, each was mutated to Ser to distinguish between them. Like wild-type SCOT, the C196S mutant protein was modified rapidly in the presence of acyl-CoA substrates. In contrast, the C28S mutant protein was modified much more slowly under identical conditions, indicating that Cys 28 is the residue exposed on binding CoA. The specific activity of the C28S mutant protein was unexpectedly lower than that of wild-type SCOT. X-ray crystallography revealed that Ser adopts a different conformation than the native Cys. A chloride ion is bound to one of four active sites in the crystal structure of the C28S mutant protein, mimicking substrate, interacting with Lys 329, Asn 51, and Asn 52. On the basis of these results and the studies of the structurally similar CoA transferase from Escherichia coli, YdiF, bound to CoA, the conformational change in SCOT was deduced to be a domain rotation of 17 degrees coupled with movement of two loops: residues 321-329 that bury Cys 28 and interact with succinate or acetoacetate and residues 374-386 that interact with CoA. Modeling this conformational change has led to the proposal of a new mechanism for catalysis by SCOT.  相似文献   

2.
Clostridium aminobutyricum ferments 4-aminobutyrate (γ-aminobutyrate, GABA) to ammonia, acetate and butyrate via 4-hydroxybutyrate that is activated to the CoA-thioester catalyzed by 4-hydroxybutyrate CoA-transferase. Then, 4-hydroxybutyryl-CoA is dehydrated to crotonyl-CoA, which disproportionates to butyryl-CoA and acetyl-CoA. Cocrystallization of the CoA-transferase with the alternate substrate butyryl-CoA yielded crystals with non-covalently bound CoA and two water molecules at the active site. Most likely, butyryl-CoA reacted with the active site Glu238 to CoA and the mixed anhydride, which slowly hydrolyzed during crystallization. The structure of the CoA is similar but less stretched than that of the CoA-moiety of the covalent enzyme-CoA-thioester in 4-hydroxybutyrate CoA-transferase from Shewanella oneidensis. In contrast to the structures of the apo-enzyme and enzyme-CoA-thioester, the structure described here has a closed conformation, probably caused by a flip of the active site loop (residues 215–219). During turnover, the closed conformation may protect the anhydride intermediate from hydrolysis and CoA from dissociation from the enzyme. Hence, one catalytic cycle changes conformation of the enzyme four times: free enzyme—open conformation, CoA+ anhydride 1—closed, enzyme-CoA-thioester—open, CoA + anhydride-2—closed, free enzyme—open.  相似文献   

3.
4.
Serine acetyltransferase is a member of the left-handed parallel beta-helix family of enzymes that catalyzes the committed step in the de novo synthesis of l-cysteine in bacteria and plants. The enzyme has an ordered kinetic mechanism with acetyl CoA bound prior to l-serine and O-acetyl-l-serine released prior to CoA. The rate-limiting step along the reaction pathway is the nucleophilic attack of the serine hydroxyl on the thioester of acetyl CoA. Product release contributes to rate-limitation at saturating concentrations of reactants. The reaction is catalyzed by an active site general base with a pK of 7, which accepts a proton from the serine hydroxyl as a tetrahedral intermediate is formed between the reactants, and donates it to the thiol of CoA as the intermediate collapses to give products. This mechanism is likely the same for all O-acyltransferases that catalyze their reaction by direct attack of the alcohol on the acyl donor, using an active-site histidine as the general base. Serine acetyltransferase is regulated by feedback inhibition by the end product l-cysteine, which acts by binding to the serine site in the active site and inducing a conformational change that prevents reactant binding. The enzyme also associates with O-acetylserine sulfhydrylase, the final enzyme in the biosynthetic pathway, which contributes to stabilizing the acetyltransferase.  相似文献   

5.
Benning MM  Haller T  Gerlt JA  Holden HM 《Biochemistry》2000,39(16):4630-4639
The molecular structure of methylmalonyl CoA decarboxylase (MMCD), a newly defined member of the crotonase superfamily encoded by the Escherichia coli genome, has been solved by X-ray crystallographic analyses to a resolution of 1.85 A for the unliganded form and to a resolution of 2.7 A for a complex with an inert thioether analogue of methylmalonyl CoA. Like two other structurally characterized members of the crotonase superfamily (crotonase and dienoyl CoA isomerase), MMCD is a hexamer (dimer of trimers) with each polypeptide chain composed of two structural motifs. The larger N-terminal domain contains the active site while the smaller C-terminal motif is alpha-helical and involved primarily in trimerization. Unlike the other members of the crotonase superfamily, however, the C-terminal motif is folded back onto the N-terminal domain such that each active site is wholly contained within a single subunit. The carboxylate group of the thioether analogue of methylmalonyl CoA is hydrogen bonded to the peptidic NH group of Gly 110 and the imidazole ring of His 66. From modeling studies, it appears that Tyr 140 is positioned within the active site to participate in the decarboxylation reaction by orienting the carboxylate group of methylmalonyl CoA so that it is orthogonal to the plane of the thioester carbonyl group. Surprisingly, while the active site of MMCD contains Glu 113, which is homologous to the general acid/base Glu 144 in the active site of crotonase, its carboxylate side chain is hydrogen bonded to Arg 86, suggesting that it is not directly involved in catalysis. The new constellation of putative functional groups observed in the active site of MMCD underscores the diversity of function in this superfamily.  相似文献   

6.
Li N  Huang F 《Biochemistry》2005,44(11):4582-4590
Coenzyme A (CoA) thioesters play essential roles in modern metabolism. To demonstrate plausible biochemical functions of thioesters in the RNA world, we have isolated a new class of ribozymes (ACT) that catalyze self-aminoacylation from a number of CoA thioesters with catalytic efficiencies ranging from 7000 to 24 000 M(-1) x min(-1). Active thioester substrates are required to contain both a free alpha-amino group in the acyl moiety and a CoA as the thiol component. We hypothesize ribozyme-based aminoacylation systems using aminoacyl thioesters of CoA as the ancestors of modern aminoacyl tRNA synthetases. On the basis of our previous results [Huang et al. (2000) Biochemistry 39, 15548-15555; Coleman and Huang (2002) Chem. Biol. 9, 1227-1236], an extensive RNA-catalyzed "metabolic pathway" involving CoA and its thioesters is proposed. Complex contemporary metabolic systems could have evolved from the proposed ribozyme pathways.  相似文献   

7.
The glycyl radical enzyme pyruvate formate-lyase (PFL) synthesizes acetyl-CoA and formate from pyruvate and CoA. With the crystal structure of the non-radical form of PFL in complex with its two substrates, we have trapped the moment prior to pyruvate cleavage. The structure reveals how the active site aligns the scissile bond of pyruvate for radical attack, prevents non-radical side reactions of the pyruvate, and confines radical migration. The structure shows CoA in a syn conformation awaiting pyruvate cleavage. By changing to an anti conformation, without affecting the adenine binding mode of CoA, the thiol of CoA could pick up the acetyl group resulting from pyruvate cleavage.  相似文献   

8.
The acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli undergoes two detectable conformational changes during catalysis of CoA transfer. The first change occurs upon binding of at least the CoA moiety of an acyl-CoA substrate and was detected by fluorescence enhancement of enzyme-bound 8-anilino-1-naphthalenesulfonate and microcomplement fixation upon formation of a noncovalent enzyme · CoA complex. CoA is a competitive inhibitor with respect to acyl-CoA substrate (Ki = 0.29 mM). A second, more extensive conformational change occurs upon formation of the covalent enzyme-CoA intermediate and was detected by fluorescence enhancement of enzymebound 8-anilino-1-naphthalenesulfonate, sedimentation of the intermediate in sucrose density gradients, and microcomplement fixation. The data clearly differentiated between the three distinct forms of the enzyme, i.e., free enzyme, noncovalent enzyme·CoA complex, and covalent enzyme-CoA intermediate. The data are consistent with a model in which the enzyme opens upon formation of the enzyme-CoA intermediate. Either the limited conformational change or the extensive conformational change generates subunit interactions which result in half-the-sites reactivity in the enzyme. Only one of the two potential active sites was charged with etheno-CoA when the enzyme was reacted with etheno-acetyl-CoA. Glycerol abolished the extreme negative cooperativity and both active sites were charged with etheno-CoA in the presence of 10% glycerol. Our data suggest that glycerol abolished subunit interactions in either the enzyme-CoA complex or the covalent intermediate and not in the free enzyme.  相似文献   

9.
The reactive thioester complexes of gramicidin S synthetase with substrate amino acids and intermediate peptides are slowly hydrolyzed in neutral buffer solutions under mild conditions. Fully active enzyme is recovered. These processes are strongly accelerated by certain thiol protective agents. In the presence of 1 mM dithioerythritol the half-life times of these hydrolysis reactions are in the range of 1-90 h at 3 degrees C. The thioester complex of gramicidin S synthetase 2 (GS2, the heavy enzyme) with the tripeptide DPhe-Pro-Val is distinguished by the highest stability of all these intermediates. A different decomposition pattern is observed for the thioester complex of GS2 with LOrn. Here 3-amino-2-piperidone (cyclo-LOrn) is formed in a rapid cyclization reaction. This product specifically blocks the activation center of GS2 for LOrn at the thioester binding site. All other activation reactions of gramicidin S synthetase are unaffected. A procedure for a specific labelling of the reaction centers of the multienzyme is outlined.  相似文献   

10.
Rangarajan ES  Li Y  Iannuzzi P  Cygler M  Matte A 《Biochemistry》2005,44(15):5728-5738
L-Carnitine (R-[-]-3-hydroxy-4-trimethylaminobutyrate) is found in both eukaryotic and prokaryotic cells and participates in diverse processes including long-chain fatty-acid transport and osmoprotection. The enzyme crotonobetainyl/gamma-butyrobetainyl-CoA:carnitine CoA-transferase (CaiB; E.C. 2.8.3.-) catalyzes the first step in carnitine metabolism, leading to the final product gamma-butyrobetaine. The crystal structures of Escherichia coli apo-CaiB, as well as its Asp169Ala mutant bound to CoA and to carnitinyl-CoA, have been determined and refined to 1.6, 2.4, and 2.4 A resolution, respectively. CaiB is composed of two identical circular chains that together form an intertwined dimer. Each monomer consists of a large domain, containing a Rossmann fold, and a small domain. The monomer and dimer resemble those of formyl-CoA transferase from Oxalobacter formigenes, as well as E. coli YfdW, a putative type-III CoA transferase of unknown function. The CoA cofactor-binding site is formed at the interface of the large domain of one monomer and the small domain from the second monomer. Most of the protein-CoA interactions are formed with the Rossmann fold domain. While the location of cofactor binding is similar in the three proteins, the specific CoA-protein interactions vary somewhat between CaiB, formyl-CoA transferase, and YfdW. CoA binding results in a change in the relative positions of the large and small domains compared with apo-CaiB. The observed carnitinyl-CoA product in crystals of the CaiB Asp169Ala mutant cocrystallized with crotonoyl-CoA and carnitine could result from (i) a catalytic mechanism involving a ternary enzyme-substrate complex, independent of a covalent anhydride intermediate with Asp169, (ii) a spontaneous reaction of the substrates in solution, followed by binding to the enzyme, or (iii) an involvement of another residue substituting functionally for Asp169, such as Glu23.  相似文献   

11.
Biosynthetic thiolases catalyze the biological Claisen condensation of two acetyl-CoA molecules to form acetoacetyl-CoA. This is one of the fundamental categories of carbon skeletal assembly patterns in biological systems and is the first step in many biosynthetic pathways including those which generate cholesterol, steroid hormones and ketone body energy storage molecules. High resolution crystal structures of the tetrameric biosynthetic thiolase from Zoogloea ramigera were determined (i) in the absence of active site ligands, (ii) in the presence of CoA, and (iii) from protein crystals which were flash frozen after a short soak with acetyl-CoA, the enzyme's substrate in the biosynthetic reaction. In the latter structure, a reaction intermediate was trapped: the enzyme was found to be acetylated at Cys89 and a molecule of acetyl-CoA was bound in the active site pocket. A comparison of the three new structures and the two previously published thiolase structures reveals that small adjustments in the conformation of the acetylated Cys89 side-chain allow CoA and acetyl-CoA to adopt identical modes of binding. The proximity of the acetyl moiety of acetyl-CoA to the sulfur atom of Cys378 supports the hypothesis that Cys378 is important for proton exchange in both steps of the reaction. The thioester oxygen atom of the acetylated enzyme points into an oxyanion hole formed by the nitrogen atoms of Cys89 and Gly380, thus facilitating the condensation reaction. The interaction between the thioester oxygen atom of acetyl-CoA and His348 assists the condensation step of catalysis by stabilizing a negative charge on the thioester oxygen atom. Our structure of acetyl-CoA bound to thiolase also highlights the importance in catalysis of a hydrogen bonding network between Cys89 and Cys378, which includes the thioester oxygen atom of acetyl-CoA, and extends from the catalytic site through the enzyme to the opposite molecular surface. This hydrogen bonding network is different in yeast degradative thiolase, indicating that the catalytic properties of each enzyme may be modulated by differences in their hydrogen bonding networks.  相似文献   

12.
Studies of the reactivity of succinyl-CoA:3-keto acid CoA transferase with a small coenzyme A analog, methylmercaptopropionate, have shown that noncovalent interactions between the enzyme and the side chain of CoA are responsible for a rate acceleration of approximately 10(12), which is close to the total rate acceleration brought about by the enzyme (Moore, S. A., and Jencks, W. P. (1982) J. Biol. Chem. 257, 10893-10907). We report here that interaction between the enzyme and the pantetheine moiety of CoA provides the majority of the rate acceleration and destabilization of the enzyme-thiol ester intermediate that is observed with CoA substrates. The role of the adenosine 3'-phosphate 5'-diphosphate moiety of CoA is to provide 6.9 kcal/mol of binding energy in order to pull the pantetheine moiety into the active site. The enzyme-thiol ester intermediate, E-pantetheine, was generated by reaction of pantetheine with the thiol ester of enzyme and methylmercaptopropionate. E-Pantetheine undergoes hydrolysis with khyd = 2 min-1, 140-fold faster than E-CoA, and reacts with acetoacetate with kAcAc = 3 X 10(6) M-1 min-1, only 10-fold slower than E-CoA. However, in the reverse direction acetoacetylpantetheine reacts with CoA transferase (kAcAc-SP = 220 M-1 min-1) 1.6 X 10(6) times slower than acetoacetyl-CoA. The equilibrium constant for the reaction of pantetheine with E-CoA is approximately 8 X 10(-6).  相似文献   

13.
Olsen LR  Huang B  Vetting MW  Roderick SL 《Biochemistry》2004,43(20):6013-6019
Serine acetyltransferase (SAT, EC 2.3.1.30) catalyzes the CoA-dependent acetylation of the side chain hydroxyl group of l-serine to form O-acetylserine, as the first step of a two-step biosynthetic pathway in bacteria and plants leading to the formation of l-cysteine. This reaction represents a key metabolic point of regulation for the cysteine biosynthetic pathway due to its feedback inhibition by cysteine. We have determined the X-ray crystal structure of Haemophilus influenzae SAT in complexes with CoA and its cysteine feedback inhibitor. The enzyme is a 175 kDa hexamer displaying the characteristic left-handed parallel beta-helix (LbetaH) structural domain of the hexapeptide acyltransferase superfamily of enzymes. Cysteine is bound in a crevice between adjacent LbetaH domains and underneath a loop excluded from the coiled LbetaH. The proximity of its thiol group to the thiol group of CoA derived from superimposed models of the cysteine and CoA complexes confirms that cysteine is bound at the active site. Analysis of the contacts of SAT with cysteine and CoA and the conformational differences that distinguish these complexes provides a structural basis for cysteine feedback inhibition, which invokes competition between cysteine and serine binding and a cysteine-induced conformational change of the C-terminal segment of the enzyme that excludes binding of the cofactor.  相似文献   

14.
Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 A resolution, respectively. YdiF is organized into tetramers, with each monomer having an open alpha/beta structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent gamma-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.  相似文献   

15.
An acyl CoA transferase has been purified to electrophoretic homogeneity from the soluble compartment of Ascaris suum muscle mitochondria. From SDS-PAGE, isoelectric focusing and molecular exclusion chromatography, homogeneity was confirmed and the enzyme appears to be composed of two similar or identical subunits of apparent mol. wts of 50,000 resulting in an apparent mol. wt of 100,000 for the holoenzyme. The apparent isoelectric point was 5.6 +/- 0.1 by both chromatofocusing columns and slab gel isoelectric focusing. The transferase was relatively specific for the short, straight-chain acyl CoA donors as well as the CoA acceptors, being active on acetyl CoA, propionyl CoA, butyryl CoA, valeryl CoA and hexanoyl CoA as donors to acetate and propionate. Neither succinyl CoA nor succinate were appreciably active as CoA donor or acceptor, respectively. This enzyme cannot serve physiologically to activate succinate for decarboxylation to propionate, but may serve to ensure a supply of propionyl CoA which appears to be required in catalytic amounts for the decarboxylation of succinate.  相似文献   

16.
Analogues of coenzyme A (CoA) and of CoA thioesters have been prepared in which the amide bond nearest the thiol group has been modified. An analogue of acetyl-CoA in which this amide bond is replaced with an ester linkage was a good substrate for the enzymes carnitine acetyltransferase, chloramphenicol acetyltransferase, and citrate synthase, with K(m) values 2- to 8-fold higher than those of acetyl-CoA and V(max) values from 14 to >80% those of the natural substrate. An analogue in which an extra methylene group was inserted between the amide bond and the thiol group showed less than 4-fold diminished binding to the three enzymes but exhibited less than 1% activity relative to acetyl-CoA with carnitine acetyltransferase and no measurable activity with the other two enzymes. Analogues of several CoA thioesters in which the amide bond was replaced with a hemithioacetal linkage exhibited no measurable activity with the appropriate enzymes. The results indicate that some aspects of the amide bond and proper distance between this amide and the thiol/thioester moiety are critical for activity of CoA ester-utilizing enzymes.  相似文献   

17.
Methylmalonate semialdehyde dehydrogenase purified to homogeneity from rat liver possesses, in addition to its coupled aldehyde dehydrogenase and CoA ester synthetic activity, the ability to hydrolyze p-nitrophenyl acetate. The following observations suggest that this activity is an active site phenomenon: (a) p-nitrophenyl acetate hydrolysis was inhibited by malonate semialdehyde, substrate for the dehydrogenase reaction; (b) p-nitrophenyl acetate was a strong competitive inhibitor of the dehydrogenase activity; (c) NAD+ and NADH activated the esterase activity; (d) coenzyme A, acceptor of acyl groups in the dehydrogenase reaction, accelerated the esterase activity; and (e) the product of the esterase reaction proceeding in the presence of coenzyme A was acetyl-CoA. These findings suggest that an S-acyl enzyme (thioester intermediate) is likely common to both the esterase reaction and the aldehyde dehydrogenase/CoA ester synthetic reaction.  相似文献   

18.
In a new strategy for labeling the active sites of serine proteinases with fluorescence probes (Bock, P. E. (1988) Biochemistry 27, 6633-6639), a thioester peptide chloromethyl ketone inhibitor is incorporated into the enzyme active center and used to produce a unique thiol group which provides a site for selective chemical modification with any one of many thiol-reactive fluorescence probes. This approach was developed to increase the opportunities for identifying fluorescent proteinase derivatives that act as reporters of binding interactions by allowing a large number of derivatives, representing a broad range of probe spectral properties, to be readily prepared. In the studies described here, the specificity of the labeling approach was evaluated quantitatively for the labeling of human alpha and beta/gamma-thrombin with the thioester peptide chloromethyl ketones, N alpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl and N alpha-[(acetylthio)acetyl]-D-Phe-Phe-Arg-CH2Cl, and the thiol-reactive fluorescence probe, 5-(iodoacetamido)fluorescein. Irreversible inactivation of thrombin by the inhibitors was accompanied by incorporation of 0.98 +/- 0.06 mol/mol of the thioester group into the active site, independent of a 470-fold difference between the thioester peptide chloromethyl ketones in the bimolecular rate constants of alpha-thrombin affinity labeling. Subsequent mild treatment of the covalent thrombin-inhibitor complexes with NH2OH in the presence of 5-(iodoacetamido)fluorescein resulted in generation of the thiol group together with its selective modification and incorporation of 0.96 +/- 0.07 mol of probe/mol of active sites. The incorporated label was localized to a 9000 molecular weight region of alpha and beta/gamma-thrombin containing the catalytic-site histidine residue. Evaluation of competing, side reactions showed that they did not significantly compromise the active site specificity of labeling. These results demonstrated equivalent, active-site-selective fluorescence probe labeling of alpha and beta/gamma-thrombin by use of either of the thioester peptide chloromethyl ketones, with a site specificity of greater than or equal to 94%.  相似文献   

19.
Phenylmercuric acetate reversibly de-greens butyryl-CoA dehydrogenase from Megasphaera elsdenii, abolishing the absorption band at 710nm. The view that this is a result of modification of a protein thiol group is re-examined in the light of the following new observations. (i) After treatment with phenylmercuric acetate, the enzyme's ability to be re-greened by addition of thiols was not decreased by gel filtration or precipitation with (NH(4))(2)SO(4). (ii) Phenylmercuric acetate caused the same extent of de-greening whether added in a few large amounts or many small ones. The overall time taken for de-greening was, however, greatly extended when many small additions were made. (iii) In Tris/acetate buffer, pH7.5, 3.5mol of phenylmercuric acetate/mol of enzyme subunit was required for complete de-greening, compared with only 2.5mol/mol in phosphate buffer, pH7. (iv) None of the groups that react with phenylmercuric acetate is accessible to iodoacetate or iodoacetamide. (v) On a molar basis dithiothreitol, mercaptoethanol and CoA are equally effective in re-greening the enzyme. (vi) Provided that phenylmercuric acetate is not present in excess, the de-greened enzyme forms normal and stable complexes with crotonyl-CoA and acetoacetyl-CoA. (vii) When a small excess of phenylmercuric acetate is present, full stable development of the enzyme-acetoacetyl-CoA complex requires addition of several mol of acetoacetyl-CoA/mol of enzyme subunit. (viii) The ability of de-greened enzyme to be immediately re-greened by an excess of thiol declines with time, more rapidly at pH6 than at pH7 or 8, but at all three pH values the instantaneous re-greening was followed by a slow phase of further increase in A(710). This further recovery was most extensive and most rapid at pH8. These findings are reminiscent of the previously described reversible decline in the re-greening capacity of a protein-free acid extract of green butyryl-CoA dehydrogenase. It is concluded that the likely cause of de-greening is chemical modification of the tightly bound thioester rather than a protein thiol group. The reversibility would be explained if the thioester exists on the surface of the enzyme in equilibrium with free CoA and a lactone, or if the acyl group is readily and reversibly transferred from the thiol of CoA to a protein side chain.  相似文献   

20.
Bovine CD38/NAD(+)glycohydrolase (bCD38) catalyses the hydrolysis of NAD(+) into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2'-fluorinated analogs of NAD(+). Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1' of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2'-OH of the substrate NAD(+). Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号