共查询到20条相似文献,搜索用时 8 毫秒
1.
Glucose-6-phosphatase as a cytochemical marker of endoplasmic reticulum in human leukocytes and platelets 总被引:1,自引:0,他引:1
B A Nichols P Y Setzer D F Bainton 《The journal of histochemistry and cytochemistry》1984,32(2):165-171
Leukocytes and platelets, freshly isolated from normal human blood, were tested cytochemically for glucose-6-phosphatase (G-6-Pase) by a modified Wachstein-Meisel method. The enzyme was present in the endoplasmic reticulum (ER) and perinuclear cisternae of all five types of leukocytes and in the ER of platelets. The reaction product from the cytochemical test distinguished the ER from other intracellular membrane-limited cisternae (i.e., the smooth pinocytic tubules of monocytes and the surface-connected canalicular system of platelets) and thus is a valuable marker of the ER. The cytochemical test also showed that the ER of polymorphonuclear leukocytes (PMN), usually obscured by abundant granules in cells prepared for morphological examination, is more extensive than formerly appreciated. This is the first demonstration of G-6-Pase in human leukocytes. Its precise role in leukocyte metabolism can now be investigated. 相似文献
2.
3.
《Molecular membrane biology》2013,30(4):217-227
SummaryHepatic glucose-6-phosphatase (G-6-Pase) catalyses the terminal step of hepatic glucose production and it plays a key role in the maintenance of blood glucose homeostasis. Hepatic G-6-Pase is an integral resident endoplasmic reticulum (ER) protein and it is part of a multicomponent system. Its active site is situated inside the lumen of the ER and transport proteins are needed to allow its substrates, glucose-6-phosphate (G-6-P) (and pyrophosphate), and its products, phosphate and glucose, to cross the ER membrane. In addition, a calcium-binding protein is also associated with the G-6-Pase enzyme. Recent immunological studies have shown that G-6-Pase (which has conventionally been thought to be present only in the gluconeogenic organs) is present in minor cell types in a variety of human tissues and that its distribution changes dramatically during human development. In all the tissues, enzymatic analysis, direct transport assays and/or immunological detection of the ER glucose and phosphate transport proteins have been used to demonstrate the presence and activity of the whole G-6-Pase system. The G-6-Pase protein is very hydrophobic and has proved difficult to purify to homogeneity. Four proteins of the system have now been isolated and polyclonal antibodies have been raised against them; two have also been cloned. The available sequences, together with topologicai studies, have given some information about both the topology of the proteins in the ER and the probable mechanisms by which the proteins are retained in the ER. 相似文献
4.
5.
Barr FA 《Current opinion in cell biology》2002,14(4):496-499
Yeast and mammalian cells use a variety of different mechanisms to ensure that the endoplasmic reticulum and Golgi apparatus are inherited by both daughter cells on cell division. In yeast, endoplasmic reticulum inheritance involves both active microtubule and passive actin-based mechanisms, while the Golgi is transported into the forming daughter cell by an active actin-based mechanism. Animal cells actively partition the endoplasmic reticulum and Golgi apparatus, but association with the mitotic spindle-rather than the actin cytoskeleton-appears to be the mechanism 相似文献
6.
Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum 总被引:6,自引:0,他引:6
N Nuwayhid J H Glaser J C Johnson H E Conrad S C Hauser C B Hirschberg 《The Journal of biological chemistry》1986,261(28):12936-12941
We have studied in rat liver the subcellular sites and topography of xylosylation and galactosylation reactions occurring in the biosynthesis of the D-glucuronic acid-galactose-galactose-D-xylose linkage region of proteoglycans and of glucuronosylation reactions involved in both glycosaminoglycan biosynthesis and bile acid and bilirubin conjugation. The specific translocation rate of UDP-xylose into sealed, "right-side-out" vesicles from the Golgi apparatus was 2-5-fold higher than into sealed right-side-out vesicles from the rough endoplasmic reticulum (RER). Using the above vesicle preparations, we only detected endogenous acceptors for xylosylation in the Golgi apparatus-rich fraction. The specific activity of xylosyltransferase (using silk fibroin as exogenous acceptor) was 50-100-fold higher in Golgi apparatus membranes than in those from the RER. Previous studies had shown that UDP-galactose is translocated solely into vesicles from the Golgi apparatus. In these studies, we found the specific activity of galactosyltransferase I to be 40-140-fold higher in membranes from the Golgi apparatus than in those from the RER. The specific translocation rate of UDP-D-glucuronic acid into vesicles from the Golgi apparatus was 10-fold higher than into those from the RER, whereas the specific activity of glucuronosyltransferase (using chondroitin nonasaccharide as exogenous acceptor) was 12-30-fold higher in Golgi apparatus membranes than in those from the RER. Together, the above results strongly suggest that, in rat liver, the biosynthesis of the above-described proteoglycan linkage region occurs in the Golgi apparatus. The specific activity of glucuronosyltransferase, using bile acids and bilirubin as exogenous acceptor, was 10-25-fold higher in RER membranes than those from the Golgi apparatus. This suggests that transport of UDP-D-glucuronic acid into the RER lumen is not required for such reactions. 相似文献
7.
Nuclear membranes from mammalian liver. VI. Glucose-6-phosphatase in rat liver, a cytochemical and biochemical study 总被引:6,自引:0,他引:6
Activities of glucose-6-phosphatase (G-6-Pase) and other phosphatases were determined in nuclei, nuclear membrane and microsomal fractions and subfractions, and condensed chromatin isolated from the liver of adult, newly born and prenatal rats. The purity of the fractions was controlled by electron microscopic morphometry and by measurement of various marker enzymes. The specific G-6-Pase activity of the nuclear membranes was found to be about 60% that of the microsomes. However, when calculated on the basis of the phospholipid content, all fractions had similar activities. Determinations of G-6-Pase enrichments and recoveries were also made. The correspondence of the hydrolysing activities of glucose-6-phosphate, mannose-6-phosphate, and inorganic pyrophosphate, together with various phosphotransferases, showed the same association of the G-6-Pase with these enzymes in the nuclear envelope as in the microsomal membranes. G-6-Pase was also demonstrated in the fractions by cytochemistry, and the activity was localized alongside the cisternal surfaces of both, inner and outer, nuclear membrane. ‘Free’ inner nuclear membrane fragments contained also G-6-Pase. No activity was observed at the nuclear pore complexes. Both, nuclear and microsomal membranes revealed a parallel rapid perinatal increase of G-6-Pase activity climaxing at 23 to 28 h after birth. Triton-X-100 treatment of isolated nuclei, which was found not to selectively release outer nuclear membranes, resulted in a great decrease of G-6-Pase activity as well as in losses of membrane phospholipids. The results clarify the divergence of earlier reports concerning the presence of G-6-Pase in the perinuclear cisterna and add biochemical evidence to the morphologically derived view of the nuclear envelope as being a special form of the ER system. 相似文献
8.
The endoplasmic reticulum (ER) of rooster's spermatids was analyzed during spermiogenesis, which was subdivided into eight distinct steps on the basis of changes observed with the electron microscope in the nucleus, acrosome-perforatorium system, manchette, and flagellum. In steps 1 and 2, spermatids' ER cisternae presented the following specializations: A loose network of tubular cisternae was distributed throughout the cytoplasm. Six to eight tight networks of anastomosed tubular cisternae parallel to each other were closely stacked to form a discoid body (1.5-2.5 microns in diameter and 0.5-0.8-micron thick) in which spheroidal vesicles (0.4 micron in diameter) were inserted. Close to and connected with this body, called the alveolar body, there was a stack of annulate lamellae. Large, flattened ER cisternae were seen singly or in piles of two or three running parallel to the nuclear surface. A collection of tubular ER cisternae faced plaques of thickened plasma membranes. These elements of the ER system appear continuous with each other. During steps 3-5 of spermiogenesis, no modification of the alveolar body-annulate lamellae complex was noted; the large flattened ER cisternae disappeared, however, and the broad network of tubular cisternae developed markedly. During steps 6 and 7, the latter network of tubular cisternae fragmented into vesicles that swelled to give a vacuolated appearance to the cytoplasm. The alveolar body-annulate lamellae complex remained visible until late step 7, when it disintegrated just before spermiation. Thus the system of ER cisternae underwent marked structural modifications during spermiogenesis. 相似文献
9.
Significant advances have been made in recent years that have increased our understanding of the trafficking to and from membranes that are functionally linked to the Golgi apparatus in plants. New routes from the Golgi to organelles outside the secretory pathway are now being identified, revealing the importance of the Golgi apparatus as a major sorting station in the plant cell. This review discusses our current perception of Golgi structure and organization as well as the molecular mechanisms that direct traffic in and out of the Golgi. 相似文献
10.
Lippincott-Schwartz J 《Trends in cell biology》1993,3(3):81-88
Membrane traffic between the endoplasmic reticulum and Golgi apparatus is a highly regulated process that uses distinct anterograde and retrograde pathways. These pathways link two organelles that together function as a dynamic membrane system specialized for the biosynthesis and sorting of membrane to be used throughout the cell. The nature and underlying biochemical control of membrane transport along these pathways is thought to be tied to a common regulatory system involving assembly and disassembly of cytosolic proteins on membranes. 相似文献
11.
Enzyme induction of HeLa cell placental alkaline phosphatase with various agents such as prednisolone, sodium butyrate, hyperosmolality (NaCl), or combination of these inducers resulted in the appearance of enzyme activity in the rough endoplasmic reticulum, nuclear envelope, Golgi apparatus, and plasma membrane. In the Golgi apparatus, intense reaction product deposits tended to be concentrated on its trans side, with small vesicles and granules also being positively stained. Inhibition of protein synthesis with cycloheximide was followed by the disappearance of enzyme activity from these cytoplasmic organelles but not from the plasma membrane. Treatment with monensin, a secretory protein transport inhibitor, uniformly increased activity in the rough endoplasmic reticulum while causing marked dilatation of the intensely positive Golgi cisternae. These results suggest that intracellular alkaline phosphatase is newly synthesized in the endoplasmic reticulum and then passes en route through the Golgi apparatus to the plasma membrane. Accordingly, the present system could represent the biosynthesis, transport, and incorporation of the model cell surface enzyme protein to add to the vesicular stomatitus virus glyco-1 (VSV-G) protein and acetylcholine receptor model systems for studying the dynamics of cell surface protein genesis, transport, and membrane integration. 相似文献
12.
13.
Saul Wischnitzer 《Cell and tissue research》1962,57(2):202-212
Conclusion An electron microscope study of the Golgi complex was carried out using amphibian oocytes both prior to and after vitellogenesis. In the former case it was noted that the Golgi complex consists of small vesicles and cisternae. After yolk formation, each Golgi mass was found to consist only of (a smaller number of) cisternae. The distribution, function, and multiplication of the Golgi material were also discussed.This work was supported by U.S.P.H.S. research grant RG 5803 (C 2) and was carried out during the course of a U.S.P.H.S. Special Research Fellowship (GF—5356—C 2). 相似文献
14.
Crossing the divide--transport between the endoplasmic reticulum and Golgi apparatus in plants 总被引:1,自引:0,他引:1
Hanton SL Bortolotti LE Renna L Stefano G Brandizzi F 《Traffic (Copenhagen, Denmark)》2005,6(4):267-277
The transport of proteins between the endoplasmic reticulum (ER) and the Golgi apparatus in plants is an exciting and constantly expanding topic, which has attracted much attention in recent years. The study of protein transport within the secretory pathway is a relatively new field, dating back to the 1970s for mammalian cells and considerably later for plants. This may explain why COPI- and COPII-mediated transport between the ER and the Golgi in plants is only now becoming clear, while the existence of these pathways in other organisms is relatively well documented. We summarize current knowledge of these protein transport routes, as well as highlighting key differences between those of plant systems and those of mammals and yeast. These differences have necessitated the study of plant-specific aspects of protein transport in the early secretory pathway, and this review discusses recent developments in this area. Advances in live-cell-imaging technology have allowed the observation of protein movement in vivo, giving a new insight into many of the processes involved in vesicle formation and protein trafficking. The use of these new technologies has been combined with more traditional methods, such as protein biochemistry and electron microscopy, to increase our understanding of the transport routes in the cell. 相似文献
15.
Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus 下载免费PDF全文
Lígia C Gomes‐da‐Silva Liwei Zhao Lucillia Bezu Heng Zhou Allan Sauvat Peng Liu Sylvère Durand Marion Leduc Sylvie Souquere Friedemann Loos Laura Mondragón Baldur Sveinbjørnsson Øystein Rekdal Gaelle Boncompain Franck Perez Luis G Arnaut Oliver Kepp Guido Kroemer 《The EMBO journal》2018,37(13)
Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune‐dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species‐dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA‐dependent secretory pathway. This led to a general inhibition of protein secretion by PDT‐treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin‐based PDT. Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro‐apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function. 相似文献
16.
17.
Under artificial conditions Golgi enzymes have the capacity to rapidly accumulate in the endoplasmic reticulum (ER). These observations prompted the idea that Golgi enzymes constitutively recycle through the ER. We have tested this hypothesis under physiological conditions through use of a procedure that captures Golgi enzymes in the ER. In the presence of rapamycin, which induces a tight association between FKBP (FK506-binding protein) and FRAP (FKBP-rapamycin-associated protein), an FKBP-tagged Golgi enzyme can be trapped when it visits the ER by an ER-retained protein fused to FRAP. We find that although FKBP-ERGIC-53 of the ER-Golgi intermediate compartment (ERGIC) rapidly cycles through the ER (30 min), FKBP-Golgi enzyme chimeras remain stably associated with Golgi membranes. We also demonstrate that Golgi dispersion upon nocodazole treatment mainly occurs through a mechanism that does not involve the recycling of Golgi membranes through the ER. Our findings suggest that the Golgi apparatus, as defined by its collection of resident enzymes, exists independent of the ER. 相似文献
18.
M E Beard 《The journal of histochemistry and cytochemistry》1990,38(9):1377-1381
D-amino acid oxidase, a peroxisomal enzyme, and D-aspartate oxidase, a potential peroxisomal enzyme, share biochemical attributes. Both produce hydrogen peroxide in flavin-requiring oxidative reactions. Such similarities suggest that D-aspartate oxidase may also be localized to peroxisomes. Definitive identification of D-aspartate oxidase as a peroxisomal enzyme depends, however, on visualization at the electron microscopic level. Using incubation conditions shown to be specific for the enzyme in biochemical studies, this report extends the cytochemical localization of D-amino acid oxidase to bovine renal peroxisomes, and shows that D-aspartate can be oxidized by rat and bovine renal peroxisomes. An unexpected finding was the sensitivity of both D-amino acid oxidase activity (proline specific) and D-aspartate oxidase activity to inhibition by agents used in biochemical studies to discriminate between the two enzyme activities. Therefore, it is possible that, in the cytochemical system used in this study, (a) either D-proline and D-aspartate are substrates for only one enzyme or (b) the two enzymes have additional overlapping biochemical properties. 相似文献
19.
20.
Translocation of UDP-N-acetylglucosamine into vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus 总被引:7,自引:0,他引:7
A mixture of UDP-N-acetylglucosamine labeled with different radioisotopes in the uridine and glucosamine was used to show that the intact sugar nucleotide was translocated across the membrane of vesicles derived from rat liver rough endoplasmic reticulum (RER) and Golgi apparatus. Translocation was dependent on temperature, saturable at high concentrations of sugar nucleotide, and inhibited by treatment of vesicles with proteases, suggesting protein carrier mediated transport. Translocation of UDP-GlcNAc by RER-derived vesicles appeared to be specific since these vesicles were unable to translocate UDP-galactose, in contrast to those derived from the Golgi apparatus. Preliminary results suggest that the mechanism of UDP-GlcNAc translocation into RER-derived vesicles is via a coupled exchange with lumenal nucleoside monophosphate. This is similar to the recently postulated mechanism for translocation of sugar nucleotides into vesicles derived from the Golgi apparatus. 相似文献