首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary On the basis of widespread phylogenetic conservatism, it has been propose'd that serologically-defined H-Y antigen is the inducer of primary sex differentiation in mammals, causing the initially indifferent gonad to become a testis rather than an ovary. The proposal has withstood extensive testing in a variety of biological circumstances: XX males have testes and are H-Y+ and fertile XY females lack testicular tissue and are H-Y; soluble H-Y antigen induces testicular organogenesis in XX indifferent gonads of the fetal calf in culture; H-Y antibody blocks tubular reaggregation of dispersed XY testicular cells, causing them to organize follicular clusters.There is a gonadal receptor for H-Y antigen: fetal ovarian cells that have been exposed to soluble H-Y (released for example by testicular Sertoli cells) take up the molecule and acquire the H-Y+ phenotype; they absorb H-Y antibody in serological tests. Specific uptake of soluble H-Y does not occur in the extra-gonadal tissues.It may be inferred that H-Y antigen is disseminated during embryogenesis and bound by specific receptors in cells of the primordial gonad, and that reaction of H-Y and its receptor signals a program of testicular differentiation, regardless of karyotype. The several anomalies of primary sexual differentiation manifest in such conditions as the XX male, the XX true hermaphrodite, and the XY female can thus reasonably be viewed as specific errors of synthesis, dissemination, and binding of H-Y antigen.H-Y is secreted by Daudi cells, cultured from a human XY Burkitt lymphoma. The Daudi-secreted moiety is a single hydrophobic protein of 18,000 molecular weight. Early attempts to characterize H-Y secreted by testicular Sertoli cells have yielded two molecules, one of 16,500 MW (corresponding to the Daudi-secreted 18,000 MW protein), and one of 31,000 MW. It remains to be ascertained whether both are in fact H-Y antigens, and if so, whether one is a polymer of the other, or whether each represents the product of genes with discrete testis-determining functions.  相似文献   

2.
H-Y antigen, first described as a male minor transplantation antigen, is unvarying associated with testicular differentiation, more than the presence of Y chromosome. The weak reactivity of anti H-Y serum needs quantitative and very sensitive tests to detect presence or absence of H-Y. This antigen may act as an hormone, to induce testicular differentiation of target cells, bearing a specific receptor at their surface. The relationship between an H-Y molecule immunologically defined by its antigenicity and H-Y factor defined by its function to induce testicular organogenesis must be determined.  相似文献   

3.
Summary Presence of H-Y antigen has been correlated with testicular differentiation, and absence of H-Y with failure of testicular differentiation, in a variety of mammalian species. To determine more precisely the relationship between expression of H-Y antigen and development of the testis, we studied the cells of phenotypic females with the 46,XY male karyotype. Blood leukocytes were typed H-Y+ in five XY females with gonadal dysgenesis, although in other studies blood leukocytes from XY females with gonadal dysgenesis were typed H-Y-. Thus mere presence of H-Y antigen is not sufficient to guarantee normal differentiation of the testis. In the present paper we review evidence for an additional factor in gonadal organogenesis, the H-Y antigen receptor. We infer that testicular development requires engagement of H-Y and its receptor. It follows that XY gonadal dysgenesis is the consequence of functional absence of the H-Y testis inducer as in the following conditions: failure of synthesis of H-Y or failure of specific binding of H-Y.  相似文献   

4.
A suspension of free testicular cells were obtained by mild trypsin treatment from newborn BALB/c testes, and their plasma membrane H-Y antigen sites were blocked (lysostripped) by an excess of H-Y antibody of proven specificity and potency (45 min in ice). Upon 16 h of the Moscona-type rotation culture, these treated testicular cells yielded primarily spherical aggregates, more than half of which demonstrated a strong resemblance to ovarian follicles. The resemblance was particularly striking between the smallest testicular folliculoids and primordial ovarian follicles that abound in the newborn female gonad. Under the same condition, control serum-treated testicular cells primarily yielded cylindrical tubular structures that can be very long. Over a critical range, concentrations of H-Y antibody apparently influenced the frequency of testicular folliculoid formation. The above directly supports the proposed testis-organizing function of H-Y antigen and is certainly compatible with the genetic situation encountered in the wood lemming (Myopus schisticolor), that in the functional absence of H-Y antigen, XY gonadal cells readily organize an ovary.  相似文献   

5.
Summary Soluble H-Y antigen is taken up by cells of the homogametic gonad of cattle, dog, chicken and South African clawed frog. After in vitro exposure to mouse testis supernatant or male fetal calf serum, XX ovary cells or ZZ testis cells, which are normally H-Y-, acquire the H-Y+ (H-W+) phenotype and absorb mouse H-Y antibody in standard serological assays. In addition, H-Y antigens of the different species can compete for attachment to target cells of a single species. In a new competitive binding radioassay, uptake of tritiated human H-Y is blocked in XX bovine fetal ovarian cells exposed to non-labeled H-Y of mouse or fetal bull. Because H-Y antigens of the different species are cross-reactive serologically, positive reaction of H-Y from one species with gonadal cells of another signifies structural conservatism of the H-Y/H-W gonadal receptor. It follows that establishment of the H-Y/H-W-receptor complex is a common and critical early event in primary sex differentiation of the vertebrates, directing the initially indifferent embryonic gonad towards the heterogametic mode, which may be testicular or ovarian, depending on the species.  相似文献   

6.
S Ohno  Y Nagai  S Ciccarese  R Smith 《In vitro》1979,15(1):11-18
In a very strict sense, the primary (gonadal) sex of mammals is determined not so much by the presence or absence of the Y but the expression or nonexpression of the evolutionary extremely conserved plasma membrane H-Y antigen. The central somatic blastema of embryonic indifferent gonads contains one cell lineage characterized by the possession of S-F differentiation antigen that differentiates into testicular Sertoli cells in the presence of H-Y and into ovarian follicular (granulosa) cells in its absence. This cell lineage appears to play the most critical role in gonadal differentiation. Whether or not testicular Leydig cells and ovarian theca cells are similarly derived from the common cell lineage has not been determined. Nevertheless, if given H-Y antigen, presumptive theca-cell precursors of the fetal ovary acquire hCG (LH?)-receptors-the characteristic of fetal Leydig cells.  相似文献   

7.
U Müller  U Wolf  J W Siebers  E Günther 《Cell》1979,17(2):331-335
This report addresses the question whether two different types of binding exist for the reaction of H-Y antigen with the cell surface. Anti-H-Y antiserum in the presence of complement was cytotoxic only for gonadal cells expressing their own H-Y antigen, but not to ovarian cells loaded with H-Y antigen. H-Y antigen was co-redistributed with beta 2--microglobulin on newborn testicular cells, but some residual H-Y activity was found on similarly treated testis cells from 15 day old rats. After beta 2--microglobulin redistribution, testis cells maintained their binding capacity for exogenous H-Y antigen prepared from epididymal fluid or Daudi cell culture supernatants. This result suggests that exogenous H-Y antigen is bound via a gonad-specific receptor which is independent of beta 2--microglobulin and that this type of binding for H-Y antigen is different from the beta 2--m-associated expression of H-Y antigen on the cell surface.  相似文献   

8.
Summary Male-specific H-Y antigen may be defined by graft rejection, killer cell action or antibodies. Most commonly H-Y antigen is detected in assays using H-Y antisera. In these tests errors may arise from various causes: 1) Auto- and heteroantibodies cross-reacting with target cells. 2) Restriction phenomena. 3) MHC-dependent modification of the amount of H-Y antigen present on different tissues. 4) Modification of cell surface antigens by bacteria or viruses.Regarding the third definition of H-Y antigen, four different states can be distinguished in the mammalian male. H-Y occurs (1) as an integral part of the plasma membrane; (2) unspecifically attached to the membrane of human erythrocytes; (3) free in solution; (4) bound to its gonad-specific receptor.Redistribution experiments suggest that H-Y and 2-m are associated on the cell membrane. Coredistribution is not found of H-Y and MHC antigens. An antibody blocking technique demonstrates association of H-Y and H-2D antigens on unfixed lymphoid, but not on testicular cells. Human erythrocytes lacking 2-m do not integrate H-Y antigen into the cell membrane. Male erythrocytes, however, absorb H-Y antigen from the serum. The origin of H-Y antigen in the serum is not clear. It may be shed from cell membranes, derive from the testis which actively secretes H-Y antigen, or both.H-Y antigen is bound by a gonad-specific receptor. This receptor is present in the gonads of both sexes. H-Y antigen is supposed to mediate testis differentiation via this receptor. Reaggregation experiments in vitro using dissociated gonads of the newborn rat demonstrate that ovarian cells reorganize into testicular structures in the presence of H-Y antigen. The assumption cannot be confirmed that addition of H-Y antiserum to testicular cells results in ovarian structures. This finding, however, does not conflict with the view that H-Y antigen is involved in testis differentiation, e.g. by inducing testis cell-specific functions via the gonad-specific receptor.  相似文献   

9.
Summary After cultivation of dissociated rat testicular tissues, H-Y antigen is detectable in the medium; this is not the case if nongonadal male tissues are incubated. Release of H-Y antigen by testis cells is inhibited by the addition of cycloheximide. All tissues still type H-Y positive after culture. It is assumed that the testis actively secretes H-Y antigen. This assumption is supported by the finding that the amount of H-Y antigen in the epididymal fluid increases with the age of the animals.  相似文献   

10.
Summary In an infant with gonadal dysgenesis and somatic anomalies, the internal and external genitalia were female but the gonads contained tubular structures suggesting male differentiation. The karyotype was 46,XY with no evidence of structural aberration or mosaicism. Hormonal metabolism and H-Y antigen expression were assayed in cultured gonadal cells. Although unable to synthesize testosterone, the cultured cells were able to convert it to dihydrotestosterone. H-Y antigen was present, perhaps at a level lower than that in cells from normal XY males. Our observations indicate that a modicum of testicular organogenesis may precede the involution that results in a streak gonad in some cases of gonadal dysgenesis.  相似文献   

11.
To determine whether phylogenetically conservative H-Y antigen plays any part in gonadal differentiation among the nonmammalian vertebrates, we studied expression and binding of H-Y in the frog, Xenopus laevis. Soluble H-Y obtained from mouse testis and soluble H-W from chicken ovary bound specifically to cells of the ZZ testis from normal Xenopus males. In addition, H-Y (H-W) appeared selectively in the ovaries of ZZ genetic males that had been induced to become functional females by exposure to estradiol. Our observations suggest that H-Y (H-W) antigen may be involved in differentiation of the ZW ovary, and also that synthesis of H-Y may be regulated by sex steroids in the primitive ZWZZ species.  相似文献   

12.
It has been proposed that H-Y antigen secreted by cells of the Sertoli lineage is bound by receptors on these and other cells of the primordial gonad and thereby initiates formation of the testicular cords, and that H-Y is not an integral transmembrane component but a part of a ternary system with β2-microglobulin and products of the MHC. It follows that cultured Daudi cells, which lack β2-microglobulin and HLA, should secrete H-Y. This is consistent with evidence obtained with monoclonal H-Y antibody and an ELISA. By this method, free H-Y was demonstrable in the supernatant fluids of cultured Sertoli cells and Daudi cells. The assay provides a useful alternative to detection of H-Y in the complement-dependent cytotoxicity test.  相似文献   

13.
Summary In a very strict sense, the primary (gonadal) sex of mammals is determined not so much by the presence or absence of the Y but the expression or nonexpression of the evolutionary extremely conserved plasma membrane H-Y antigen. The central somatic blastema of embryonic indifferent gonads contains one cell lineage characterized by the possession of S−F differentiation antigen that differentiates into testicular Sertoli cells in the presence of H-Y and into ovarian follicular (granulosa) cells in its absence. This cell lineage appears to play the most critical role in gonadal differentiation. Whether or not testicular Leydig cells and ovarian theca cells are similarly derived from the common cell lineage has not been determined. Nevertheless, if given H-Y antigen, presumptive theca-cell precursors of the fetal ovary acquire hCG (LH?)-receptors—the characteristic of fetal Leydig cells. Presented in the formal symposium on Sexual Differentiation in Vitro and in Vivo at the 29th Annual Meeting of the Tissue Culture Association, Denver, Colorado, June 4–8, 1978. This work was supported by Contract NO1-CB-33907, and Grants No. 1 RO1 AG00042 and No. 5 RO1 CA16952 from the National Institutes of Health.  相似文献   

14.
H-Y antigens   总被引:2,自引:0,他引:2  
U. Müller 《Human genetics》1996,97(6):701-704
H-Y antigen is defined as a male histocompatibility antigen that causes rejection of male skin grafts by female recipients of the same inbred strain of rodents. Male-specific, or H-Y antigen(s), are also detected by cytotoxic T cells and antibodies. H-Y antigen appears to be an integral part of the membrane of most male cells. In addition, H-Y antibodies detect a soluble form of H-Y that is secreted by the testis. The gene (Smcy/SMCY) coding for H-Y antigen detected by T cells has been cloned. It is expressed ubiquitously in male mice and humans, and encodes an epitope that triggers a specific T -cell response in vitro. Additional epitopes coded for by different Y-chromosomal genes are probably required in vivo for the rejection of male grafts by female hosts. The molecular nature of H-Y antigen detected by antibodies on most male cells is not yet known. Testis-secreted, soluble H-Y antigen, however, was found to be identical to Müllerian-inhibiting substance (MIS). MIS cross-reacts with H-Y antibodies and identical findings were obtained for soluble H-Y antigen and MIS, i.e., secretion by testicular Sertoli and, to a lesser degree, ovarian cells, binding to a gonad-specific receptor, induction of gonadal sex reversal in vitro and, in cattle, in vivo. H-Y antisera also detect a molecule or molecules associated with the heterogametic sex in nonmammalian vertebrates. Molecular data on this antigen or antigens are not yet available.  相似文献   

15.
Testes of either newborn rats or newly hatched chickens, dissociated into single cell suspensions, reorganize in vitro into their histotypic structures. In birds, the heterogametic female sex is H-Y antigen positive, and not the male as in mammals. Cocultivation of rat and chicken testicular cells results in the reorganization of an ovotestis. A similar result is obtained after cultivation of chicken testicular cells in the supernatant medium of cultured human male Burkitt lymphoma Daudi cells. Rat testicular Sertoli cells as well as Daudi cells are a source of H-Y antigen. The simultaneous application of H-Y antigen and anti-H-Y antiserum prevents ovotestis formation. It is concluded that H-Y antigen which is known to be testis-organizing in mammals, is the ovary-organizing factor in birds.  相似文献   

16.
Summary In a previous report (Zenzes et al., 1978 b) it was shown that dissociated ovarian cells of newborn rats in vitro, if exposed to H-Y antigen, reorganize into testicular structures. The current study was designed to see whether this morphological conversion also results in a functional conversion. The LH/hCG receptor was used as a parameter characteristic for the newborn testis, but not for the newborn ovary. In the converted ovary, the LH/hCG receptor becomes detectable a few hours after onset of the culture and remains continuously present afterward. The appearance of this receptor may be due to a hormone-like action of H-Y antigen.  相似文献   

17.
Summary While it has been shown previously (Zenzes et al., 1978; Ohno et al., 1978) that when dissociated testicular cells are exposed to anti-H-Y antiserum in vitro they are prevented from reorganizing into testicular structures, forming ovarian follicular structures instead, the most conclusive evidence for the action of H-Y antigen would be the conversion of ovarian cells into testicular organization. Testing for H-Y antigen of the medium collected from cultivated testicular cells revealed a positive reaction. Dissociated ovarian cells of newborn rats cultivated in this medium reorganize into testicular structures. It is concluded that H-Y antigen is responsible for this histomorphologic change.  相似文献   

18.
With the use of mixed-hemadsorption-hybrid-antibody (MHA-HA) test, H-Y antigen was studied on neonatal testicular cells and fractionated testicular cells from young mice (4–6 weeks old). H-Y antigen was undetectable on spermatogonia cells from neonatal testes but became fully expressed on late spermatids. Our data suggested that there was postmeiotic expression of H-Y antigen.  相似文献   

19.
Summary The binding capacity for H-Y antigen was studied in various rat tissues of both sexes. In nongonadal tissues (liver, kidney, brain, epidermis) binding could not be demonstrated. In contrast, the gonads are able to bind exogenously supplied H-Y antigen. In the ovary, the binding capacity remains unchanged in newborn and adult animals, while in the testis, this capacity decreases with age. A receptor like that of a proteohormone is assumed to exist in the gonads but not in other tissues. In nongonadal tissues, H-Y antigen apparently is present only if the cell itself synthesizes the antigen. The H-Y antigen receptor of the gonads is not sex-specific. Thus, the primary sex differentiation depends on whether H-Y antigen is synthesized in the organism.  相似文献   

20.
Summary H-Y antigen could not be detected on lymphocytes from two male pseudohermaphrodites with 46,XY karyotypes and testicular tissue. One of the patients had additional assays performed on fibroblasts grown from the skin, and the gonadal ridge—these were also negative. The H-Y antiserum was raised in rats, with Raji cells the target of cytotoxicity tests. In these patients, the substance that promoted testicular differentiation does not have serologic H-Y antigen detectable by the assay used. It appears that H-Y antigen that is commonly measured in neutralization reactions may not be the only form of testicular organizing factor present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号