首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Values of KI for nine proline analogs as inhibitors of proline chemotaxis and of proline transport were determined. Two of them inhibited transport at substantially lower concentrations than chemotaxis; two at substantially higher concentrations. Moreover, mutants, believed to be in the component that binds proline, were isolated that showed a shift of KM for transport to higher concentrations, one as much as 40-fold. However, chemotaxis was virtually unaffected. Therefore, unlike galactose chemotaxis and transport in Escherichia coli, which share the galactose-binding protein, proline chemotaxis and transport in Bacillus subtilis are independent.  相似文献   

2.
We observed a large efflux of nonvolatile radioactivity from Bacillus subtilis in response to the addition of 31 mM butyrate or the withdrawal of 0.1 M aspartate in a flow assay. The major nonvolatile components effluxed were methionine, proline, histidine, and lysine. In studies of the release of volatile radioactivity in chemotaxis by B. subtilis cells that had been labeled with [3H]methionine, the breakdown of methionine to methanethiol can contribute substantially to the volatile radioactivity in fractions following addition of 0.1 M aspartate. However, methanol was confirmed to be released after aspartate addition and, in lesser quantities, after aspartate withdrawal. Methanol and methanethiol were positively identified by derivitization with 3,5-dinitro-benzoylchloride. Amino acid efflux but not methanol release was observed in response to 0.1 M aspartate stimulation of a cheR mutant of B. subtilis that lacks the chemotaxis methylesterase. The amino acid efflux could be reproduced by withdrawal of 0.1 M NaCl, 0.2 M sucrose, or 0.2 M xylitol and is probably the result of changes in osmolarity. Chemotaxis to 10 mM alanine or 10 mM proline resulted in methanol release but not efflux of amino acids. In behavioral studies, B. subtilis tumbled for 16 to 18 s in response to a 200 mosM upshift and for 14 s after a 20 mosM downshift in osmolarity when the bacteria were in perfusion buffer (40 mosM). The pattern of methanol release was similar to that observed in chemotaxis. This is consistent with osmotaxis in B. subtilis away from an increase or decrease in the osmolarity of the incubation medium. The release of methanol suggests that osmotaxis is correlated with methylation of a methyl-accepting chemotaxis protein.  相似文献   

3.
Luteolin is a phenolic compound from plants that acts as a potent and specific inducer of nodABC gene expression in Rhizobium meliloti. We have found that R. meliloti RCR2011 exhibits positive chemotaxis towards luteolin. A maximum chemotactic response was observed at 10(-8) M. Two closely related flavonoids, naringenin and apigenin, were not chemoattractants. The presence of naringenin but not apigenin abolished chemotaxis of R. meliloti towards luteolin. A large deletion in the nif-nod region of the symbiotic megaplasmid eliminated all chemotactic response to luteolin but did not affect general chemotaxis, as indicated by swarm size on semisoft agar plates and chemotaxis towards proline in capillary tubes. Transposon Tn5 mutations in nodD, nodA, or nodC selectively abolished the chemotactic response of R. meliloti to luteolin. Agrobacterium tumefaciens GMI9050, a derivative of the C58 wild type lacking a Ti plasmid, responded chemotactically to 10(-8) M luteolin. The introduction of a 290-kilobase nif-nod-containing sequence of DNA from R. meliloti into A. tumefaciens GMI9050 enabled the recipient to respond to luteolin at concentrations peaking at 10(-6) M as well as at concentrations peaking at 10(-8) M. The response of A. tumefaciens GMI9050 to luteolin was also abolished by the presence of naringenin.  相似文献   

4.
Involvement of transport in Rhodobacter sphaeroides chemotaxis.   总被引:11,自引:9,他引:2       下载免费PDF全文
The chemotactic response to a range of chemicals was investigated in the photosynthetic bacterium Rhodobacter sphaeroides, an organism known to lack conventional methyl-accepting sensory transduction proteins. Strong attractants included monocarboxylic acids and monovalent cations. Results suggest that the chemotactic response required the uptake of the chemoeffector, but not its metabolism. If a chemoeffector could block the uptake of another attractant, it also inhibited chemotaxis to that attractant. Sodium benzoate was not an attractant but was a competitive inhibitor of the propionate uptake system. Binding in an active uptake system was therefore insufficient to cause a chemotactic response. At different concentrations, benzoate either blocked propionate chemotaxis or reduced the sensitivity of propionate chemotaxis, an effect consistent with its role as a competitive inhibitor of uptake. Bacteria only showed chemotaxis to ammonium when grown under ammonia-limited conditions, which derepressed the ammonium transport system. Both chemotaxis and uptake were sensitive to the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, suggesting an involvement of the proton motive force in chemotaxis, at least at the level of transport. There was no evidence for internal pH as a sensory signal. These results suggest a requirement for the uptake of attractants in chemotactic sensing in R. sphaeroides.  相似文献   

5.
K Ekena  M K Liao    S Maloy 《Journal of bacteriology》1990,172(6):2940-2945
Proline uptake can be mediated by three different transport systems in wild-type Salmonella typhimurium: a high-affinity proline transport system encoded by the putP gene and two glycine-betaine transport systems with a low affinity for proline encoded by the proP and proU genes. However, only the PutP permease transports proline well enough t allow growth on proline as a sole carbon or nitrogen source. By selecting for mutations that allow a putP mutant to grow on proline as a sole nitrogen source, we isolated mutants (designated proZ) that appeared to activate a cryptic proline transport system. These mutants enhanced the transport of proline and proline analogs but did not require the function of any of the known proline transport genes. The mutations mapped between 75 and 77.5 min on the S. typhimurium linkage map. Proline transport by the proZ mutants was competitively inhibited by isoleucine and leucine, which suggests that the ProZ phenotype may be due to unusual mutations that alter the substrate specificity of the branched-chain amino acid transport system encoded by the liv genes.  相似文献   

6.
One of the most common methods of tracking movement of bacteria in groundwater environments involves a priori fluorescent staining. A major concern in using these stains to label bacteria in subsurface injection-and-recovery studies is the effect they may have on the bacterium's transport properties. Previous studies investigated the impact of fluorophores on bacterial surface properties (e.g. zeta potential). However, no previous study has looked at the impact of fluorescent staining on swimming speed and chemotaxis. It was found that DAPI lowered the mean population swimming speed of Pseudomonas putida F1 by 46% and Pseudomonas stutzeri by 55%. DAPI also inhibited the chemotaxis in both strains. The swimming speeds of P. putida F1 and P. stutzeri were diminished slightly by CFDA/SE, but not to a statistically significant extent. CFDA/SE had no effect on chemotaxis of either strain to acetate. SYBR(?) Gold had no effect on swimming speed or the chemotactic response to acetate for either strain. This research indicates that although DAPI may not affect sorption to grain surfaces, it adversely affects other potentially important transport properties such as swimming and chemotaxis. Consequently, bacterial transport studies conducted using DAPI are biased to nonchemotactic conditions and do not appear to be suitable for monitoring the effect of chemotaxis on bacterial transport in shallow aquifers.  相似文献   

7.
Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing.  相似文献   

8.
Active transport of proline remained unaffected in phospholipase A-treated electron transport particles from Mycobacterium phlei. However, the steady state level of proline was reduced 50 to 60% in phospholipase A-treated depleted electron transport particles that were devoid of membrane-bound coupling factor-latent ATPase activity. The decrease in the uptake of proline in the phospholipase A-treated depleted electron transport particles was not due to a change in the apparent K-m for proline, but it was related to the amount of phospholipid cleaved from the membranes. Restoration in the level of proline transport in phospholipase A-treated depleted electron transport particles was achieved by reconstituting these vesicles with diphosphatidylglycerol and phosphatidylethanolamine liposomes. Diphosphatidylglycerol was found to be most effective in the restoration of proline uptake. In contrast to the effect of phospholipase A treatment on proline transport, similar treatement of the electron transport particles or depleted electron transport particles failed to inhibit the active transport of either glutamine or glutamic acid. Studies with phospholipase A-treated membrane vesicles confirmed earlier findings that a proton gradient is not required for active transport of amino acids.  相似文献   

9.
10.
11.
Rhodobacter sphaeroides exhibits two behavioral responses when exposed to some compounds: (i) a chemotactic response that results in accumulation and (ii) a sustained increase in swimming speed. This latter chemokinetic response occurs without any apparent long-term change in the size of the electrochemical proton gradient. The results presented here show that the chemokinetic response is separate from the chemotactic response, although some compounds can induce both responses. Compounds that caused only chemokinesis induced a sustained increase in the rate of flagellar rotation, but chemoeffectors which were also chemotactic caused an additional short-term change in both the stopping frequency and the duration of stops and runs. The response to a change in chemoattractant concentration was a transient increase in the stopping frequency when the concentration was reduced, with adaptation taking between 10 and 60 s. There was also a decrease in the stopping frequency when the concentration was increased, but adaptation took up to 60 min. The nature and duration of both the chemotactic and chemokinetic responses were concentration dependent. Weak organic acids elicited the strongest chemokinetic responses, and although many also caused chemotaxis, there were conditions under which chemokinesis occurred in the absence of chemotaxis. The transportable succinate analog malonate caused chemokinesis but not chemotaxis, as did acetate when added to a mutant able to transport but not grow on acetate. Chemokinesis also occurred after incubation with arsenate, conditions under which chemotaxis was lost, indicating that phosphorylation at some level may have a role in chemotaxis. Aspartate was the only chemoattractant amino acid to cause chemokinesis. Glutamate caused chemotaxis but not chemokinesis. These data suggest that (i) chemotaxis and chemokinesis are separate responses, (ii) metabolism is required for chemotaxis but not chemokinesis, (iii) a reduction in chemoattractant concentration may cause the major chemotactic signal, and (iv) a specific transport pathway(s) may be involved in chemokinetic signalling in R. sphaeroides.  相似文献   

12.
Rhodobacter sphaeroides only showed chemotaxis towards ammonia if grown under nitrogen-limited conditions. This chemotactic response was completely inhibited by the addition of methionine sulfoximine. There was no effect of methionine sulfoximine treatment on motility or taxis towards propionate, demonstrating that the effect is specific to ammonia taxis. It is known that methionine sulfoximine inhibits glutamine synthetase and hence blocks ammonia assimilation. Methionine sulfoximine does not inhibit ammonia transport in R. sphaeroides; therefore, these results suggest that limited metabolism via a specific pathway is required subsequent to transport to elicit a chemotactic response to ammonia. Bacteria grown on high ammonia show transport but no chemotactic response to ammonia, suggesting that the pathway of assimilation is important in eliciting a chemotactic response.  相似文献   

13.
Regulation of A system amino acid transport was studied in primary cultures of the R3230AC mammary adenocarcinoma. Higher rates of carrier-mediated Na+-dependent proline transport, vc, was decreased and was attributed to a two-fold decrease in Vmax and a two-fold increase in Km. When compared to cells grown in standard media (Eagle's minimal essential medium, MEM), cells grown in media supplemented with A system substrates (alanine, serine, glycine, and proline) demonstrated adaptive decreases in proline transport; the decrease was due to two-fold reduction in Vmax, with no change in Km for proline. Even in the presence of preferred substrates for the A system, a density-dependent decrease in proline transport was manifested. Both fast- and slow-growing cultures maintained in MEM exhibited rapid increases in proline transport when switched to buffers devoid of amino acids; two-fold increases in Vmax were seen within 4 hr, but Km was unchanged. This starvation-induced adaptation was completely prevented by inclusion in the buffer of 10 mM proline, 0.1 mM -(methylamino)-isobutyric acid (MetAIB) or 10 mM serine, whereas inclusion of the poorer A system substrate, phenylalanine (10 mM), had no effect. The effects of MetAIB to prevent starvation-induced increases in proline transport were dose-related, rapid, and reversible. Amino acid starvation-induced increases in proline transport were partially blocked by cycloheximide or actinomycin D. Data were obtained demonstrating a temporal relationship between increasing intracellular [proline] and decreasing vc for proline uptake. In addition, efflux of proline from preloaded cells preceded the increase in initial rates of proline entry. Taken together, we concluded that: (1) A system transport in primary cultures of this mammary adenocarcinoma is regulated by cell density as well as by availability of A system substrates, but these two types of regulation are kinetically distinct; and (2) starvation-induced enhancement of proline transport appears to be due to release from transinhibition, but may also involve a derepression-repression type of mechanism.  相似文献   

14.
Proline transport in Saccharomyces cerevisiae.   总被引:7,自引:0,他引:7       下载免费PDF全文
The yeast Saccharomyces cerevisiae is capable of utilizing proline as the sole source of nitrogen. Mutants of S. cerevisiae with defective proline transport were isolated by selecting for resistance to either of the toxic proline analogs L-azetidine-2-carboxylate or 3,4-dehydro-DL-proline. Strains carrying the put4 mutation are defective in the high-affinity proline transport system. These mutants could still grow when given high concentrations of proline, due to the operation of low-affinity systems whose existence as confirmed by kinetic studies. Both systems were repressed by ammonium ions, and either was induce by proline. Low-affinity transport was inhibited by histidine, so put4 mutants were unable to grow on a medium containing high concentrations of proline to which histidine has been added.  相似文献   

15.
We examined the chemotactic behavior of ten Escherichia coli mutants able to synthesize a modified periplasmic maltose-binding protein (MBP) retaining high affinity for maltose. Eight were able to grow on maltose (Mal+), two were not (Mal-). In the capillary assay six out of eight of the Mal+ strains showed an optimal response at the same concentration of maltose as the wild-type strain; the amplitude of the response was strongly reduced in two Mal+ mutants and partially affected in one. The amplitude of the chemotactic response of the two Mal- strains was at least equal to that of the wild type, so that the chemotactic and transport functions of MBP were dissociated in these two cases. We define two regions of the protein (residues 297 to 303 and 364 to 369), that are important both for the chemotactic response and for transport, and one region (residues 207 to 220) that is essential for transport but dispensable for chemotaxis. Interestingly, some regions that were found to be inessential for transport are also dispensable for chemotaxis.  相似文献   

16.
Leishmania donovani are the causative agents of kala azar in humans. These organisms cycle between the proline-rich environment of the sand fly vector (extracellular promastigotes) and the sugar-rich condition in the mammalian host (intracellular amastigotes). Parasites have adapted to these extreme changes in proline concentrations: promastigotes utilize proline as a carbon source, whereas amastigotes utilize sugars and fatty acids. Previous studies have suggested that promastigotes and amastigotes express distinct proline transporters. However, the information available on these transporters is limited. In this work, proline transport was investigated in axenic L. donovani cultures. Three transport systems were identified: cation-dependent and -independent proline transporters in promastigotes (systems A and B, respectively) and a single cation-independent transporter in amastigotes (system C). Systems A and C have broad specificity to almost all amino acids and obtain optimum activity at acidic pH ranges (pH 6 and 5, respectively). System B is more specific to proline, as it is inhibited by only five amino acids. Temperature response analyses indicated that the transporters of both promastigotes and amastigotes perform best at 37 degrees C. The activity of system A during parasite differentiation was assessed. The transport activity of system A disappeared 3 days after promastigotes were induced to differentiate into amastigotes. In these cells, elevated temperature and acidic pH each suppressed the activity of system A. When amastigotes were induced to differentiate back into promastigotes, system A resumed its activity 24 h after differentiation was initiated. In conclusion, L. donovani obtain proline transport systems that are stage specific, regulated by both pH and temperature. This paper constitutes the first investigation of amino acid transport in axenic L. donovani.  相似文献   

17.
The effect of monovalent cations on proline transport in whole cells of Escherichia coli K-12 has been examined. Lithium ion added to the uptake medium stimulated proline transport severalfold and K+ and Na+ were slightly effective, whereas Rb+, Cs+, and NH4+ were completely without effect. The stimulatory effect of Li+ on proline transport was not due to an increase in osmolarity of the uptake medium, and d 5 mM p-chloromercuribenzene sulfonic acid completely blocked this effect of Li+ without having any effect on the basal rate of proline transport. The Arrhenius plots for Li+-stimulated transport showed a clear transition point at 35 degrees C in addition to 20 degrees C which was also detectable in the basal transport. Lithium ion stimulated proline transport synergistically in the presence of glucose and succinate as a carbon source. The addition of 2.5 mM KCN or 0.5 mM arsenate did not inhibit this synergistic effect, although the presence of these inhibitors inhibited completely the stimulation of proline transport induced by the addition of carbon source. Carbonylcyanide m-chlorophenylhydrazone and 2,4-dinitrophenol blocked both the basal and Li+-stimulated proline transport. When membrane potential of E. coli cells was measured by the dibenzyldimethylammonium uptake method, the incubation of Li+ with the cells did not affect the preexisting membrane potential. These results suggest that Li+ stimulates proline transport by intact cells of E. coli in a manner somewhat affecting membrane component(s) different from the transport carrier of proline. It is uncertain whether the effect of Li+ is directly involved in the mechanisms of energy coupling of proline transport.  相似文献   

18.
Summary In Escherichia coli K12, eight substrate-specific, membrane-bound enzymes II of the PEP-dependent carbohydrate: phosphotransferase system (PTS), specific for hexoses, hexosamines and hexitols, have been characterised in a series of isogenic and constitutive strains. In such mutants, lacking all but one enzyme II, the transport and vectorial phosphorylation activities as well as the chemotactical response in capillary tube assays have been compared. According to the data obtained, all enzymes II not only are directly involved in the transport and vectorial phosphorylation of their substrates, but they have also a primary role as the chemoreceptors for these substrates: (1) Metabolism of the attractant beyond the phosphorylation step is not a pre-requisite to eliciting positive chemotaxis. (2) Mutants, having only one enzyme II react in the capillary tube assay only to substrates of this enzyme II, but not to substrates of the missing enzymes II. This holds for enzymes II consisting of one membrane-bound protein as well as for systems containing a soluble factor III (FIII). (3) The substrate specificities or affinities, whether tested by transport and chemotaxis assays in vivo or by phosphorylation tests in vitro, are in correpondence. (4) The activities of enzymes II, regulated in a complex way at the level of enzyme synthesis and activity and tested as above, are also in agreement. (5) Mutants lacking the soluble proteins enzyme I or HPr of the PTS no longer respond chemotactically to any substrate taken up and phosphorylated by enzymes II. It is concluded that in PTS enzymes II some functions required for transport and chemotaxis are identical. It is suggested furthermore, that the alternation of intrinsic membrane-bound proteins between a phosphorylated and a dephosphorylated state, rather than binding of the substrate to the enzyme II, is the decisive stimulus in the chemotaxis toward carbohydrates taken up by these transport systems.  相似文献   

19.
A Klip  E Gagalang  W J Logan 《FEBS letters》1983,152(2):171-174
Membrane vesicles of L6 myoblasts were prepared in order to study the amino acid transport system A. The role of the membrane in the adaptive response of transport to amino acid-supplementation was assessed. The membranes, prepared by N2 cavitation, displayed Na+ (but not K+)-dependent L-proline uptake. An overshoot of L-[3H]proline uptake was observed after exposure of the vesicles to an inward Na+ gradient. Isolated membrane vesicles loaded with 50 microM proline displayed countertransport (stimulation of proline uptake). It is concluded that the adaptive decrease of proline uptake observed in amino acid-supplemented cells cannot be accounted for by trans-inhibition of transport.  相似文献   

20.
Electron transport-dependent taxis in Rhodobacter sphaeroides.   总被引:2,自引:2,他引:0       下载免费PDF全文
Rhodobacter sphaeroides showed chemotaxis to the terminal electron acceptors oxygen and dimethyl sulfoxide, and the responses to these effectors were shown to be influenced by the relative activities of the different electron transport pathways. R. sphaeroides cells tethered by their flagella showed a step-down response to a decrease in the oxygen or dimethyl sulfoxide concentration when using them as terminal acceptors. Bacteria using photosynthetic electron transport, however, showed a step-down response to oxygen addition. Addition of the proton ionophore carbonyl cyanide 4-trifluoromethoxyphenylhydrazone did not cause a transient behavioral response, although it decreased the electrochemical proton gradient (delta p) and increased the rate of electron transport. However, removal of the ionophore, which caused an increase in delta p and a decrease in the electron transport rate, resulted in a step-down response. Together, these data suggest that behavioral responses of R. sphaeroides to electron transport effectors are caused by changes in the rate of electron transport rather than changes in delta p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号