首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the mechanisms of assembly and transport to the cell surface of the mouse muscle nicotinic acetylcholine receptor (AChR) in transiently transfected COS cells. In cells transfected with all four subunit cDNAs, AChR was expressed on the surface with properties resembling those seen in mouse muscle cells (Gu, Y., A. F. Franco, Jr., P.D. Gardner, J. B. Lansman, J. R. Forsayeth, and Z. W. Hall. 1990. Neuron. 5:147-157). When incomplete combinations of AChR subunits were expressed, surface binding of 125I-alpha-bungarotoxin was not detected except in the case of alpha beta gamma which expressed less than 15% of that seen with all four subunits. Immunoprecipitation and sucrose gradient sedimentation experiments showed that in cells expressing pairs of subunits, alpha delta and alpha gamma heterodimers were formed, but alpha beta was not. When three subunits were expressed, alpha delta beta and alpha gamma beta complexes were formed. Variation of the ratios of the four subunit cDNAs used in the transfection mixture showed that surface AChR expression was decreased by high concentrations of delta or gamma cDNAs in a mutually competitive manner. High expression of delta or gamma subunits also each inhibited formation of a heterodimer with alpha and the other subunit. These results are consistent with a defined pathway for AChR assembly in which alpha delta and alpha gamma heterodimers are formed first, followed by association with the beta subunit and with each other to form the complete AChR.  相似文献   

2.
Analysis of early events in acetylcholine receptor assembly   总被引:4,自引:2,他引:2       下载免费PDF全文
Mammalian cell lines expressing nicotinic acetylcholine receptor (AChR) subunit cDNAs from Torpedo californica were used to study early events in AChR assembly. To test the hypothesis that individual subunits form homooligomeric intermediates before assembling into alpha 2 beta gamma delta pentamers, we analyzed the sedimentation on sucrose density gradients of each subunit expressed separately in cell lines. We have shown previously that the acute temperature sensitivity of Torpedo AChR subunit assembly is due, in part, to misfolding of the polypeptide chains (Paulson, H.L., and T. Claudio. 1990. J. Cell Biol. 110:1705-1717). We use this phenomenon to further analyze putative assembly-competent intermediates. In nonionic detergent at an assembly-permissive temperature, the majority of alpha, beta, gamma, and delta subunits sediment neither as 3-4S monomers nor as 9S complexes, but rather as 6S species whether synthesized in fibroblasts, myoblasts, or differentiated myosyncytia. Several results indicate that the 6S species are complexes comprised predominantly of incorrectly folded subunit polypeptides. The complexes represent homoaggregates which form rapidly within the cell, are stable to mild SDS treatment and, in the case of alpha, contain some disulfide-linked subunits. The coprecipitation of alpha subunit with BiP or GRP78, a resident protein of the ER, further indicates that at least some of these internally sequestered subunits also associated with an endogenous protein implicated in protein folding. The majority of subunits expressed in these cell lines appear to be aggregates of subunits which are not assembly intermediates and are not assembly-competent. The portion which migrates as monomer, in contrast, appears to be the fraction which is assembly competent. This fraction increases at temperatures more permissive for assembly, further indicating the importance of the monomer as the precursor to assembly of alpha 2 beta gamma delta pentamers.  相似文献   

3.
Assembly of Torpedo acetylcholine receptors in Xenopus oocytes   总被引:3,自引:2,他引:1       下载免费PDF全文
To study pathways by which acetylcholine receptor (AChR) subunits might assemble, Torpedo alpha subunits were expressed in Xenopus oocytes alone or in combination with beta, gamma, or delta subunits. The maturation of the conformation of the main immunogenic region (MIR) on alpha subunits was measured by binding of mAbs and the maturation of the conformation of the AChR binding site on alpha subunits was measured by binding of alpha-bungarotoxin (alpha Bgt) and cholinergic ligands. The size of subunits and subunit complexes was assayed by sedimentation on sucrose gradients. It is generally accepted that native AChRs have the subunit composition alpha 2 beta gamma delta. Torpedo alpha subunits expressed alone resulted in an amorphous range of complexes with little affinity for alpha Bgt or mAbs to the MIR, rather than in a unique 5S monomeric assembly intermediate species. A previously recognized temperature-dependent failure in alpha subunit maturation may cause instability of the monomeric assembly intermediate and accumulation of aggregated denatured alpha subunits. Coexpression of alpha with beta subunits also resulted in an amorphous range of complexes. However, coexpression of alpha subunits with gamma or delta subunits resulted in the efficient formation of 6.5S alpha gamma or alpha delta complexes with high affinity for mAbs to the MIR, alpha Bgt, and small cholinergic ligands. These alpha gamma and alpha delta subunit pairs may represent normal assembly intermediates in which Torpedo alpha is stabilized and matured in conformation. Coexpression of alpha, gamma, and delta efficiently formed 8.8S complexes, whereas complexes containing alpha beta and gamma or alpha beta and delta subunits are formed less efficiently. Assembly of beta subunits with complexes containing alpha gamma and delta subunits may normally be a rate-limiting step in assembly of AChRs.  相似文献   

4.
Assembly of nicotinic acetylcholine receptor (AChR) subunits was investigated using mouse fibroblast cell lines stably expressing either Torpedo (All-11) or mouse (AM-4) alpha, beta, gamma, and delta AChR subunits. Both cell lines produce fully functional cell surface AChRs. We find that two independent treatments, lower temperature and increased intracellular cAMP can increase AChR expression by increasing the efficiency of subunit assembly. Previously, we showed that the rate of degradation of individual subunits was decreased as the temperature was lowered and that Torpedo AChR expression was acutely temperature sensitive, requiring temperatures lower than 37 degrees C. We find that Torpedo AChR assembly efficiency increases 56-fold as the temperature is decreased from 37 to 20 degrees C. To determine how much of this is a temperature effect on degradation, mouse AChR assembly efficiencies were determined and found to be only approximately fourfold more efficient at 20 than at 37 degrees C. With reduced temperatures, we can achieve assembly efficiencies of Torpedo AChR in fibroblasts of 20-35%. Mouse AChR in muscle cells is also approximately 30% and we obtain approximately 30% assembly efficiency of mouse AChR in fibroblasts (with reduced temperatures, this value approaches 100%). Forskolin, an agent which increases intracellular cAMP levels, increased subunit assembly efficiencies twofold with a corresponding increase in cell surface AChR. Pulse-chase experiments and immunofluorescence microscopy indicate that oligomer assembly occurs in the ER and that AChR oligomers remain in the ER until released to the cell surface. Once released, AChRs move rapidly through the Golgi membrane to the plasma membrane. Forskolin does not alter the intracellular distribution of AChR. Our results indicate that cell surface expression of AChR can be regulated at the level of subunit assembly and suggest a mechanism for the cAMP-induced increase in AChR expression.  相似文献   

5.
《The Journal of cell biology》1989,108(6):2277-2290
Torpedo californica acetylcholine receptor (AChR) alpha-, beta-, gamma- , and delta-subunit cDNAs were each stably introduced into muscle and/or fibroblast cell lines using recombinant retroviral vectors and viral infection, or using SV-40 vectors and DNA-mediated cotransfection. The expressed proteins were characterized in terms of their molecular mass, antigenicity, posttranslational processing, cell surface expression, stability in fibroblasts, stability in differentiated and undifferentiated muscle cells, and ability (of alpha) to bind alpha-bungarotoxin (BuTx). We demonstrated that the alpha, beta, gamma, and delta polypeptides acquired one, one, two, and three units of oligosaccharide, respectively. If all four subunits were expressed in the same cell, fully functional cell surface AChRs were produced which had a Kd for BuTx of 7.8 X 10(-11) M. In contrast, subunits expressed individually were not detected on the surface of fibroblasts and the Kd for BuTx binding to individual alpha polypeptides was only approximately 4 X 10(-7) M. The half-lives of the alpha, gamma, and delta subunits at 37 degrees C were all found to be quite short (approximately 43 min), while the half-life of the beta subunit was found to be even shorter (approximately 12 min). The unique half-life of the beta subunit suggests that it might perform a key regulatory role in the process of AChR subunit assembly. One stable fibroblast cell line was established by transfection that expressed beta, gamma, and delta subunits simultaneously. When this cell line was infected with a retroviral alpha recombinant, fully functional cell surface AChRs were produced. The successful expression of this pentameric protein complex combining transfection and infection techniques demonstrates one strategy for stably introducing the genes of a heterologous multisubunit protein complex into cells.  相似文献   

6.
Agrin, a protein that mediates nerve-induced acetylcholine receptor (AChR) aggregation at developing neuromuscular junctions, has been shown to cause an increase in phosphorylation of the beta, gamma, and delta subunits of AChRs in cultured myotubes. As a step toward understanding the mechanism of agrin-induced AChR aggregation, we examined the effects of inhibitors of protein kinases on AChR aggregation and phosphorylation in chick myotubes in culture. Staurosporine, an antagonist of both protein serine and tyrosine kinases, blocked agrin-induced AChR aggregation in a dose-dependent manner; 50% inhibition occurred at approximately 2 nM. The extent of inhibition was independent of agrin concentration, suggesting an effect downstream of the interaction of agrin with its receptor. Staurosporine blocked agrin-induced phosphorylation of the AChR beta subunit, which occurs at least in part on tyrosine residues, but did not reduce phosphorylation of the gamma and delta subunits, which occurs on serine/threonine residues. Staurosporine also prevented the agrin- induced decrease in the rate at which AChRs are extracted from intact myotubes by mild detergents. H-7, an antagonist of protein serine kinases, inhibited agrin-induced phosphorylation of the gamma and delta subunits but did not block agrin-induced phosphorylation of the AChR beta subunit, AChR aggregation, or the decrease in AChR extractability. The results provide support for the hypothesis that tyrosine phosphorylation of the beta subunit plays a role in agrin-induced AChR aggregation.  相似文献   

7.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

8.
B G Wallace  Z Qu  R L Huganir 《Neuron》1991,6(6):869-878
Agrin causes acetylcholine receptors (AChRs) on chick myotubes in culture to aggregate, forming specializations that resemble the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction. Here we report that treating chick myotubes with agrin caused an increase in phosphorylation of the AChR beta, gamma, and delta subunits. H-7, a potent inhibitor of several protein serine kinases, blocked agrin-induced phosphorylation of the gamma and delta subunits, but did not prevent either agrin-induced AChR aggregation or phosphorylation of the beta subunit. Experiments with anti-phosphotyrosine antibodies demonstrated that agrin caused an increase in tyrosine phosphorylation of the beta subunit that began within 30 min of adding agrin to the myotube cultures, reached a plateau by 3 hr, and was blocked by treatments known to block agrin-induced AChR aggregation. Anti-phosphotyrosine antibodies labeled agrin-induced specializations as they do the postsynaptic apparatus. These results suggest that agrin-induced tyrosine phosphorylation of the beta subunit may play a role in regulating AChR distribution.  相似文献   

9.
When the four subunits of the Torpedo californica nicotinic acetylcholine receptor (AChR) are expressed in mammalian fibroblasts, they properly assembly into alpha 2 beta gamma delta pentamers only at temperatures lower than 37 degrees C (Claudio, T., W. N. Green, D. S. Hartman, D. Hayden, H. L. Paulson, F. J. Sigworth, S. M. Sine, and A. Swedlund. 1987. Science (Wash. DC). 238:1688-1694). Experiments here with rat L6 myoblast cell lines indicate that this temperature sensitivity is not specific to fibroblasts, but is intrinsic to Torpedo subunits. A clonal isolate of L6 cells cotransfected with the four Torpedo subunit cDNAs synthesizes the exogenous AChR subunits at 37 degrees and 26 degrees C, but expresses Torpedo AChR complexes only at the lower temperature. When Torpedo alpha alone is expressed in L6 myotubes, hybrid AChRs are formed, again only at temperatures below 37 degrees C. These hybrid AChRs can contain either two Torpedo alpha subunits or one each of rat and Torpedo alpha, proving that the two alpha subunits in an AChR pentamer need not derive from the same polysome. Further analysis of hybrid and all-Torpedo AChR established that there is no internally sequestered pool of AChR at the nonpermissive temperature, and that the AChR, once formed, is thermostable. Two lines of experimentation with alpha subunits expressed in fibroblasts indicate that alpha polypeptides exhibit different conformations at 26 degrees and 37 degrees C, favoring the hypothesis that the temperature-sensitive step occurs before assembly and reflects, at least in part, misfolding of subunits: at 37 degrees C, there is a reduction in the fraction of alpha subunits that (a) bind the AChR antagonist alpha-bungarotoxin with high affinity; and (b) bind a monoclonal antibody that recognizes correctly folded and/or assembled alpha subunit.  相似文献   

10.
P Blount  J P Merlie 《Neuron》1989,3(3):349-357
We have stably expressed in fibroblasts different pairs of alpha and non-alpha subunits of the mouse muscle nicotinic acetylcholine receptor (AChR). The gamma and delta, but not the beta, subunits associated efficiently with the alpha subunit, and they extensively modified its binding characteristics. The alpha gamma and alpha delta complexes formed distinctly different high affinity binding sites for the competitive antagonist d-tubocurarine that, together, completely accounted for the two nonequivalent antagonist binding sites in native AChR. The alpha delta complex and native AChR had similar affinities for the agonist carbamylcholine. In contrast, although the alpha gamma complex contains the higher affinity competitive antagonist binding site, it had an affinity for carbamylcholine that was an order of magnitude less than that of the alpha delta complex or the AChR. The comparatively low agonist affinity of the alpha gamma complex may represent an allosterically regulated binding site in the native AChR. These data support a model of two nonequivalent binding sites within the AChR and imply that the basis for this nonequivalence is the association of the alpha subunit with the gamma or delta subunit.  相似文献   

11.
S Verrall  Z W Hall 《Cell》1992,68(1):23-31
Ligand-gated ion channels are oligomeric membrane proteins in which homologous subunits specifically recognize one another and assemble around an aqueous pore. To identify domains responsible for the specificity of subunit association, we used a dominant-negative assay in which truncated subunits of the mouse muscle acetylcholine receptor (AChR) were coexpressed with the four wild-type subunits in transfected COS cells. Fragments of the alpha, delta, and gamma subunits consisting solely of the extracellular N-terminal domain blocked surface expression of the AChR and the formation of alpha delta heterodimers, an early step in the assembly pathway of the AChR. Immunoprecipitation and sucrose gradient sedimentation experiments showed that an N-terminal fragment of the alpha subunit forms a specific complex with the intact delta subunit. Thus the extracellular N-terminal domain of the alpha, delta, and gamma subunits contains the information necessary for specific subunit association.  相似文献   

12.
A region of 25 nucleotides is highly conserved in genes coding for the alpha, beta, gamma, and delta subunits of the nicotinic acetylcholine receptor (AChR) of human, mouse, calf, chicken, and Torpedo. Based on this observation, a 2-fold degenerate oligonucleotide was synthesized and used as a probe to screen a cDNA library made from a mouse myogenic cell line. Clones coding for the beta, gamma, and delta subunits were identified by the probe. The protein sequence deduced from the beta subunit clones codes for a precursor polypeptide of 501 amino acids with a calculated molecular weight of 56,930 daltons, which includes a signal peptide of 23 amino acids. The protein sequence and structural features of the beta subunits of mouse, calf, and Torpedo are conserved. A clone coding for the mouse gamma subunit was isolated, and its identity was confirmed by alignment of its sequence to previously published cDNA sequences for the mouse and calf gamma subunits. The clone contained approximately 200 nucleotides more at its 3' end untranslated region than a mouse gamma clone recently described. Northern blot analysis, utilizing as probes these beta and gamma subunit cDNAs and previously characterized alpha and delta subunit cDNAs, shows that the steady-state levels of the four AChR mRNAs increase coordinately during terminal differentiation of cultured C2 and C2i mouse myoblasts. The increase in mRNA levels can account for the rise of cell surface receptors during myogenesis and suggests that the muscle AChR genes may be regulated during development by a common mechanism. Utilization of this oligonucleotide probe should prove useful for screening a variety of libraries made from different species and tissues which are known to express AChRs.  相似文献   

13.
We have investigated the role of the immunoglobulin-binding protein (BiP) in the folding and assembly of subunits of the acetylcholine receptor (AChR) in COS cells and in C2 muscle cells. Immunoprecipitation in COS cells showed that alpha, beta, and delta subunits are associated with BiP. In the case of the alpha subunit, which first folds to acquire toxin-binding activity and is then assembled with the other subunits to form the AChR, BiP was associated only with a form that is unassembled and does not bind alpha-bungarotoxin. Similar results were found in C2 cells. Although the alpha and beta subunits of the AChR are minor membrane proteins in C2 cells, they were prominent among the proteins immunoprecipitated by antibodies to BiP, suggesting that BiP could play a role in their maturation or folding. In pulse-chase experiments in C2 cells, however, labeled alpha subunit formed a stable complex with BiP that was first detected after most of the alpha subunit had acquired toxin-binding activity and whose amount continued to increase for several hours. These kinetics are not compatible with a role for the BiP complex in the folding or assembly pathway of the AChR, and suggest that BiP is associated with a misfolded form of the subunit that is slowly degraded.  相似文献   

14.
T cell hybridomas reactive with the acetylcholine receptor and its subunits   总被引:2,自引:0,他引:2  
A panel of thirty cloned rat-mouse T cell hybridomas was prepared by fusion of acetylcholine receptor (AChR)-reactive rat T cells with the mouse thymoma BW5147. The T cell hybrids were demonstrated to be AChR reactive by their ability to secrete IL 2 in response to either AChR itself or by purified AChR subunits (alpha,beta,gamma, or delta). Various patterns of AChR subunit reactivity were observed, suggesting a predominant recognition of the alpha subunit, and also a considerable cross-reactivity from one subunit to another.  相似文献   

15.
Oligomerization of complete and incomplete combinations of rat muscle-type nicotinic acetylcholine receptor (nAChR) subunits in Xenopus oocytes was studied by blue native PAGE and compared with acetylcholine-activated current in these cells. The rank order of expression level judged by current was alpha 1 beta 1 gamma delta > alpha 1 beta 1 gamma > alpha 1 beta 1 delta > alpha 1 gamma delta > alpha 1 delta > alpha 1 gamma. alpha 1 and alpha 1 beta 1 were not functional. Protein complexes incorporating a heptahistidyl-tagged alpha 1 subunit were chromatographically purified from digitonin extracts of oocytes and resolved by blue native PAGE. In the absence of any co-expressed nAChR subunit, the majority of alpha 1 formed aggregates. Co-expression of beta 1 had no effect on alpha 1 aggregation, whereas both gamma and delta diminished alpha 1 aggregation in favor of discrete oligomers: alpha 1 formed tetramers together with gamma and dimers, trimers, and tetramers together with delta. When alpha 1 gamma was complemented with beta 1 to form a functional alpha 1 beta 1 gamma receptor, a small amount of a pentamer was found besides a prominent alpha 1-His7 beta 1 gamma trimer. Expression of the functional alpha 1 beta 1 delta receptor yielded marked amounts of a pentamer besides dimers and trimers. These results are discussed in terms of the assembly model of Green and Claudio (Cell 74, 57-69, 1994), substantiating that blue native PAGE is suited for the investigation of ion channel assembly.  相似文献   

16.
Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor   总被引:24,自引:0,他引:24  
Fourteen clonal hybridoma lines that secrete monoclonal antibodies (mabs) to the Torpedo acetylcholine receptor (AChR) have been isolated. When analyzed by an immunoreplica technique, two mabs recognized the alpha subunit, three reacted with the beta subunit, one reacted with the gamma chain, and five recognized the delta subunit. One mab failed to react with any of the subunits using this assay and two mabs recognized determinants found on both the gamma and the delta subunits. These were classified according to their reactivities with the membrane-bound Torpedo AChR. One category is comprised of mabs (including both anti-alpha mabs) that recognize extracellular epitopes. A second classification included mabs that are unable to bind the membrane-associated AChR. The third category is comprised of mabs directed against cytoplasmic epitopes of the AChR. The latter mabs, all of which recognize the gamma or delta subunits or both, bind only slightly to sealed, outside-out Torpedo vesicles. The binding is increased 10-20-fold by either alkaline extraction or treatment of the vesicles with 10 mM lithium diiodosalicylate but not by permeabilization of the vesicles with saponin. Three of the six mabs in this category react with frog muscle endplates but only if the cytoplasmic surface of the membrane is accessible.  相似文献   

17.
GABA(A) receptors in the CNS are pentameric molecules composed of alpha, beta, gamma, delta, epsilon and theta subunits. Studies on transfected cells have shown that GABA(A) receptor beta subunit isoforms can direct alpha1 subunit localization within the cell. To examine the role of selected subunits in governing GABA(A) receptor expression in neurons, cultures of rat cerebellar granule cells were grown with antisense or sense oligodeoxynucleotides (ODNs) specific for the alpha 1, beta 2 or gamma 2 subunits. These subunits are all expressed in granule neurons where they are thought to contribute to an abundant receptor type. Following ODN treatment, subunit expression and distribution were examined by western blotting, immunocytochemistry and RT-PCR. Treatment of the cultures with the antisense, but not the corresponding sense, ODNs reduced the levels of the targeted subunit polypeptides. In addition, the beta 2 antisense ODN reduced the level of the alpha1 subunit polypeptide without altering the level of its mRNA. In contrast, treatment with the beta 2 subunit antisense ODN did not alter gamma 2 subunit polypeptide expression, distribution or mRNA level. These findings suggest that the alpha1 subunit requires a beta subunit for assembly into GABA(A) receptors in cerebellar granule neurons.  相似文献   

18.
Trypsin cleavage has been used to probe structure-function relationships of the Escherichia coli ATP synthase (ECF1F0). Trypsin cleaved all five subunits, alpha, beta, gamma, delta, and epsilon, in isolated ECF1. Cleavage of the alpha subunit involved the removal of the N-terminal 15 residues, the beta subunit was cleaved near the C-terminus, the gamma subunit was cleaved near Ser202, and the delta and epsilon subunits appeared to be cleaved at several sites to yield small peptide fragments. Trypsin cleavage of ECF1 enhanced the ATPase activity between 6- and 8-fold in different preparations, in a time course that followed the cleavage of the epsilon subunit. This removal of the epsilon subunit increased multisite ATPase activity but not unisite ATPase activity, showing that the inhibitory role of the epsilon subunit is due to an effect on cooperativity. The detergent lauryldimethylamine oxide was found to increase multisite catalysis and also increase unisite catalysis more than 2-fold. Prolonged trypsin cleavage left a highly active ATPase containing only the alpha and beta subunits along with two fragments of the gamma subunit. All of the subunits of ECF1 were cleaved by trypsin in preparations of ECF1F0 at the same sites as in isolated ECF1. Two subunits, the beta and epsilon subunits, were cleaved at the same rate in ECF1F0 as in ECF1 alone. The alpha, gamma, and delta subunits were cleaved significantly more slowly in ECF1F0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
《The Journal of cell biology》1990,111(6):2613-2622
The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits accumulate, and ultimately make functional receptors in AChR- expressing cells.  相似文献   

20.
The subunits of phosphorylase kinase are separated and isolated in high yield by gel filtration chromatography in pH 3.3 phosphate buffer containing 8 M urea. Three protein peaks are obtained: the alpha and beta subunits coelute in the first, whereas the gamma and delta subunits are separate peaks. Upon dilution of the denaturant, catalytic activity reappears, associated only with the gamma subunit. As has been previously observed (Kee, S.M., and Graves, D.J. (1986) J. Biol. Chem. 261, 4732-4737), addition of calmodulin dramatically stimulates the reactivation of gamma. Inclusion of increasing amounts of the alpha/beta subunit mixture in the renaturation progressively decreases the activity of the renatured gamma or gamma-calmodulin. This inhibition by alpha/beta is likely due to specific interactions with the gamma subunit because the inhibition is less at pH 8.2 than at pH 6.8 and less when equivalent amounts of phosphorylated alpha/beta subunits are used (both alkaline pH and phosphorylation are known to stimulate the activity of the holoenzyme). These results suggest that the role of either the alpha or beta subunits, or perhaps both, in the nonactivated (alpha 2 beta 2 gamma 2 delta 2)2 complex of phosphorylase kinase is to suppress the activity of the gamma subunit and that activation of the enzyme, by phosphorylation for instance, is due to deinhibition caused by release of this quaternary constraint by alpha and/or beta upon gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号