首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S K Das  B L Fanburg 《Enzyme》1992,46(4-5):188-195
An enzyme-linked immunosorbent assay (ELISA) was developed for the measurement of bovine Cu,Zn-SOD. Accuracy of the ELISA and specificity of the antibody for cell-free extracts was established by: (1) measurement of antigen levels of bovine endothelial cell extracts reconstituted with pure antigen, and (2) immunoblotting with affinity purified antibody. The ELISA was highly sensitive and 0.05-0.10 ng of pure antigen could be accurately detected, which allowed the measurement of Cu,Zn-SOD in as few as 250 endothelial cells. With utilization of the ELISA for detection, DEAE-cellulose chromatography patterns of endothelial cell Cu,Zn-SOD overlapped those of pure bovine erythrocyte Cu,Zn-SOD. Exposure of cells in culture to 80% O2 for 48 h increased the relative abundance of the Cu,Zn-SOD as measured by the ELISA by 1.8-fold. Thus, endothelial cells in culture respond to hyperoxia by enhanced production of Cu,Zn-SOD protein. The ELISA developed in this study may be useful for assessing other factors that regulate cellular production of Cu,Zn-SOD.  相似文献   

2.
Developmental regulation of rat lung Cu,Zn-superoxide dismutase.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the present investigation we found that lung Cu,Zn-superoxide dismutase (SOD) activity (units/mg of DNA) increases steadily in the rat from birth to adulthood. The specific activity (units/micrograms of enzyme) of Cu,Zn-SOD was unchanged from birth to adulthood, excluding enzyme activation as a mechanism responsible for the increase in enzyme activity. Lung synthesis of Cu,Zn-SOD peaked at 1 day before birth and decreased thereafter to adult values. Calculations, based on rates of Cu,Zn-SOD synthesis and the tissue content of the enzyme, indicated that lung Cu,Zn-SOD activity increased during development owing to the rate of enzyme synthesis exceeding its rate of degradation by 5-10%. These calculations were supported by measurements of enzyme degradation in the neonatal (half-life, t1/2, = 12 h) and adult lung (t1/2 = greater than 100 h); the difference in half-life did not reflect the rates of overall protein degradation in the lung, since these rates were not different in lungs from neonatal and adult rats. We did not detect differences in the Mr or pI of Cu,Zn-SOD during development, but the susceptibility of the enzyme to inactivation by heat or copper chelation decreased with increasing age of the rats. We conclude that the progressive increase in activity of Cu,Zn-SOD is due to a rate of synthesis that exceeds degradation of the enzyme. The data also suggest that increased stabilization of enzyme conformation accounts for the greater half-life of the enzyme in lungs of adult compared with neonatal rats.  相似文献   

3.
4.
5.
The Cu,Zn-superoxide dismutase (SOD1) has been reported to exert an S-nitrosylated glutathione (GSNO) denitrosylase activity that was augmented by a familial amyotrophic lateral sclerosis (FALS)-associated mutation in this enzyme. This putative enzymatic activity as well as the spontaneous decomposition of GSNO has been reexamined. The spontaneous decomposition of GSNO exhibited several peculiarities, such as a lag phase followed by an accelerating rate plus a marked dependence on GSNO concentration, suggestive of autocatalysis, and a greater rate in polypropylene than in glass vessels. Dimedone caused a rapid increase in absorbance likely due to reaction with GSNO, followed by a slower increase possibly due to reaction with an intermediate such as glutathione sulfenic acid. SOD1 weakly increased the rate of decomposition of GSNO, but did so only when GSH was present; and FALS-associated mutant forms of SOD1 were not more active in this regard than was the wild type. Decomposed GSNO, when added to fresh GSNO, hastened its decomposition, in accord with autocatalysis, and when added to GSH, generated GSNO in accord with the presence of nitrite. A mechanism is proposed that is in accord with these observations.  相似文献   

6.
Bovine pulmonary artery endothelial cells (BPAEC) are extremely sensitive to oxygen, mediated by superoxide production. Ionizing radiation is known to generate superoxide in oxygenated aqueous media; however, at systemic oxygen levels (3%), no oxygen enhancement is observed after irradiation. A number of markers (cell growth, alamarBlue, mitochondrial membrane polarization) for metabolic activity indicate that BPAEC maintained under 20% oxygen grow and metabolize more slowly than cells maintained under 3% oxygen. BPAEC cultured in 20% oxygen grow better when they are transiently transfected with either manganese superoxide dismutase (MnSOD) or copper zinc superoxide dismutase (CuZnSOD) and exhibit improved survival after irradiation (0.5-10 Gy). Furthermore, X irradiation of BPAEC grown in 20% oxygen results in very diffuse colony formation, which is completely ameliorated by either growth in 3% oxygen or overexpression of MnSOD. However, MnSOD overexpression in BPAEC grown in 3% oxygen provides no further radioprotection, as judged by clonogenic survival curves. Radiation does not increase apoptosis in BPAEC but inhibits cell growth and up-regulates p53 and p21 at either 3% or 20% oxygen.  相似文献   

7.
Oxidation of catecholamines may contribute to the pathogenesis of Parkinson's disease (PD). The effect of the oxidized products of catecholamines on the modification of Cu,Zn-superoxide dismutase (SOD) was investigated. When Cu,Zn-SOD was incubated with the oxidized 3,4-dihydroxyphenylalanine (DOPA) or dopamine, the protein was induced to be aggregated. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of catecholamines in the presence of copper ion. Radical scavengers, azide, N-acetylcysteine, and catalase inhibited the oxidized catecholamine-mediated Cu,Zn-SOD aggregation. Therefore, the results indicate that free radicals may play a role in the aggregation of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to catecholamines was subsequently analyzed by an amino acid analysis, the glycine and histidine residues were particularly sensitive. These results suggest that the modification of Cu,Zn-SOD by oxidized catecholamines might induce the perturbation of cellular antioxidant systems and led to a deleterious cell condition.  相似文献   

8.
9.
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem.  相似文献   

10.
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem.  相似文献   

11.
Bovine pulmonary artery endothelial cells (BPAEC) were cultured in vitro under a variety of conditions to investigate how metallothionein (MT) might participate in zinc homeostasis. Experimental conditions included 10% serum to ensure that the in vitro environment would be a better reflection of the in vivo situation than with protein-free medium. MT was increased by acutely high zinc concentrations (100-200 micromol/L) in the extracellular environment. MT was relatively insensitive to moderate changes in zinc concentration (2-50 micromol/L), even after prolonged exposure for 7 to 12 days. BPAEC had reduced MT content when grown in medium containing serum that had been dialyzed to remove components with a molecular mass of less than 1,000, including zinc. Because the principal source of the major minerals in the experimental medium was not the serum, their concentrations in the final medium were not significantly influenced by serum dialysis. Restoring the zinc concentration in the medium containing the dialyzed serum did not restore MT content in BPAEC, suggesting that some small molecular weight molecule other than zinc established their basal MT content. This study did not identify these putative factors in serum, but hormones are likely candidates. Forty-eight-hour incubations of BPAEC with interleukin (IL-6) or dexamethasone increased cellular MT; however, 17beta-estradiol decreased MT, and IL-1 and adenosine 3',5'-cyclic phosphate (cAMP) had no discernible effect. We conclude that extracellular zinc concentrations have relatively little impact on the cellular concentrations of MT and zinc of BPAEC in vitro. Zinc homeostasis by BPAEC is not maintained by changing the MT concentration in response to changes in the extracellular zinc environment. (J. Nutr. Biochem. 10:00-00, 1999).  相似文献   

12.
The activation of microglial cells in response to neuropathological stimuli is one of the prominent features of human neurodegenerative diseases. Cytokines such as IL-1 beta and TNF-alpha and inflammation-related enzymes such as inducible nitric oxide synthase are usually induced during the activation of microglial cells. We investigated the modulation of the activation of microglial cell by transfecting a Cu/Zn-SOD cDNA into BV-2 cells. Parental and transfected BV-2 cells were then subjected to LPS stimulation. The results showed that in Cu/Zn-SOD-transfected BV-2 cells, the expression and activity of Cu/Zn-SOD increased. On the other hand, upon activation by LPS, these cells produced less NO, IL-1 beta, and TNF-alpha than the parental microglial cells. This finding suggests that superoxide may be an early signal triggering the induction of cytokines and that the transfected Cu/Zn-SOD may provide a neuroprotective function via suppression of microglial activation. In addition, this approach may provide a rationale for the development of treatments for neurodegenerative diseases.  相似文献   

13.
Conventional methods of endothelial cell culture on monolayers and beads require enzymatic digestion, traumatic scraping, or centrifugation to transfer cells to other experimental systems. Gelfoam, a porous gelatin block, not only supports the growth of bovine pulmonary artery endothelial cells but also allows the rapid transfer of cell-laden blocks from one experimental system to another with minimal intervention. This property has been shown to be especially useful for the rapid fixation of endothelial cells for microscopy using standard histologic methods. Histology confirmed that the trabecular nature of the substrate allows endothelial cells to line the interstices of the sponge matrix and grow in a configuration that simulates the appearance of the endothelium in small vessels and capillaries. The inoculation of 1 x 10(5) endothelial cells on 7.5 mg Gelfoam (24 x 8 x 2 mm blocks) was enhanced by fibroblast growth factor and resulted in cell attachment by day 2 with a cell doubling time of 1.7 days. In addition, endothelial cells completely infiltrated 1, 5 and 7.5 mg Gelfoam blocks, as verified by histology. Assays to quantify cell number and protein were easily performed. To facilitate cell counting, the Gelfoam matrix was rapidly removed by the addition of 0.05 mg/ml collagenase, a concentration that interfered minimally with the assay for cellular protein concentration. The data demonstrate that Gelfoam is a suitable support growth matrix for the in vitro culture of bovine pulmonary artery endothelial cells.  相似文献   

14.
The release of H(2)O(2) from alveolar macrophages has been linked to the development of pulmonary fibrosis, but little is known about its source or mechanism of production. We found that alveolar macrophages from asbestosis patients spontaneously produce high levels of H(2)O(2) and have high expression of Cu,Zn-superoxide dismutase (SOD). Because Cu,Zn-SOD is found in the mitochondrial intermembrane space (IMS), we hypothesized that mitochondrial Cu,Zn-SOD-mediated H(2)O(2) generation contributed to pulmonary fibrosis. Asbestos-induced translocation of Cu,Zn-SOD to the IMS was unique to macrophages and dependent on functional mitochondrial respiration and the presence of at least one of the conserved cysteines required for disulfide bond formation. These conserved cysteine residues were also necessary for enzyme activation and H(2)O(2) generation. Cu,Zn-SOD-mediated H(2)O(2) generation was inhibited by knockdown of the iron-sulfur protein, Rieske, in complex III. The role of Cu,Zn-SOD was biologically relevant in that Cu,Zn-SOD(-/-) mice generated significantly less H(2)O(2) and had less oxidant stress in bronchoalveolar lavage fluid and lung parenchyma. Furthermore, Cu,Zn-SOD(-/-) mice did not develop pulmonary fibrosis, and knockdown of Cu,Zn-SOD in monocytes attenuated collagen I deposition by lung fibroblasts. Our findings demonstrate a novel mechanism for the pathogenesis of pulmonary fibrosis where the antioxidant enzyme Cu,Zn-SOD translocates to the mitochondrial IMS to increase H(2)O(2) generation in alveolar macrophages.  相似文献   

15.
16.
The well-studied cytosolic Cu,Zn-superoxide dismutase (SOD) protects against reperfusion injury, although its short (6 min) plasma half-life and negative charge create undesirable pharmacokinetics. We have designed, cloned, and expressed a genetic variant of SOD with altered pharmacological properties. A fusion gene consisting of the entire coding region of human SOD followed by a positively charged carboxy-terminal (C-terminal) “tail” of eight glycine and six arginine residues was constructed. The tail was modeled after the extracellular SOD (EC-SOD) C-terminal 26-amino acid basic peptide. This EC-SOD tail binds to heparin-like proteoglycans on cell surfaces and contributes to the enzyme’s very long (30 h) plasma clearance time. After expression inEscherichia coli, the mutant enzyme was purified and characterized. No differences in specific activity or UV absorption spectrum between the mutant and the native enzyme were found. The thermal stability of the fusion protein was greater than that of native SOD. Although native SOD has no affinity for heparin, the modified enzyme bound to a heparin-agarose column. A “designer” SOD able to bind to cell surfaces may aid in the prevention of superoxide-mediated endothelial damage.  相似文献   

17.
Kim YS  Han S 《FEBS letters》2000,479(1-2):25-28
Reaction of Cu,Zn-superoxide dismutase (SOD1) and hydrogen peroxide generates a putative oxidant SOD-Cu2+-.OH that can inactivate the enzyme and oxidize 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to DMPO-.OH. In the presence of nitric oxide (.NO), the SOD1/H2O2 system is known to produce peroxynitrite (ONOO-). In contrast to the proposed cytotoxicity of .NO conferred by ONOO-, we report here a protective role of .NO in the H2O2-induced inactivation of SODI. In a dose-dependent manner, .NO suppressed formation of DMPO-.OH and inactivation of the enzyme. Fragmentation of the enzyme was not affected by .NO. Bicarbonate retarded formation of ONOO-, suggesting that .NO competes with bicarbonate for the oxidant SOD-Cu2+-.OH. We propose that .NO protects SOD1 from H2O2-induced inactivation by reducing SOD-Cu2+.OH to the active SOD-Cu2+ with concomitant production of NO+ which reacts with H2O2 to give ONOO-.  相似文献   

18.
Methylglyoxal (MG) has been identified as an intermediate in non-enzymatic glycation, and increased levels have been reported in patients with diabetes. In this study, the effect of MG on the structure and function of human Cu,Zn-superoxide dismutase (SOD) was investigated. MG modifies Cu,Zn-SOD, as indicated by the formation of fluorescent products. When Cu, Zn-SOD was incubated with MG, covalent crosslinking of the protein increased progressively. MG-mediated modification of Cu,Zn-SOD led to loss of enzymatic activity and release of copper ions from the protein. Radical scavengers inhibited the crosslinking of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to MG was analyzed, glycine, histidine, lysine, and valine residues were found to be particularly sensitive. It is suggested that oxidative damage to Cu,Zn-SOD by MG may perturb cellular antioxidant defense systems and damage cells. This effect may account, in part, for organ deterioration in diabetes.  相似文献   

19.
The activation of endothelial cells by endothelium-dependent vasodilators has been investigated using bioassay, patch clamp and 45Ca flux methods. Cultured pulmonary artery endothelial cells have been demonstrated to release EDRF in response to thrombin, bradykinin, ATP and the calcium ionophore A23187. The resting membrane potential of the endothelial cells was -56 mV and the cells were depolarized by increasing extracellular K+ or by the addition of (0.1-1.0 mM)Ba2+ to the bathing solution. The electrophysiological properties of the cultured endothelial cells suggest that the membrane potential is maintained by an inward rectifying K+ channel with a mean single channel conductance of 35.6 pS. The absence of a depolarization-activated inward current and the reduction of 45Ca influx with high K+ solution suggests that there are no functional voltage-dependent calcium or sodium channels. Thrombin and bradykinin were shown to evoke not only an inward current (carried by Na+ and Ca2+) but also an increase in 45Ca influx suggesting that the increase in intracellular calcium necessary for EDRF release is mediated by an opening of a receptor operated channel. High doses of thrombin and bradykinin induced intracellular calcium release, however, at low doses of thrombin no intracellular calcium release was observed. We propose that the increased cytosolic calcium concentration in endothelial cells induced by endothelium dependent vasodilators is due to the influx of Ca2+ through a receptor operated ion channel and to a lesser degree to intracellular release of calcium from a yet undefined intracellular store.  相似文献   

20.
Sodium arsenite is one of a number of agents reported to induce a 30-34 kDa 'stress' protein in cells. Other agents which induce this stress protein, including diethyl maleate (DEM) and H2O2, have also been reported to be inducers of cystine transport in fibroblasts, macrophages, endothelial cells and other cell types. We have determined that micromolar levels of sodium arsenite increase cystine transport in bovine pulmonary artery endothelial cells (BPAEC), resulting in increases in intracellular glutathione (GSH). The increase in cystine transport appears to be due to stimulation of the synthesis of a protein analogous to the xc- transport system, a sodium-independent system specific for cystine and glutamate. We have determined that this stimulation is maximal between 8-16 h after addition of sodium arsenite and is inhibited by exogenous GSH. Others have reported that synthesis of the 30-34 kDa stress protein is maximal between 2-4 h and returns to baseline by 6-10 h. We conclude that cystine transport may be considered a 'secondary' stress response and is likely to be modulated by sulfhydryl-reactive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号