首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The lymph gland is the major site of hematopoiesis in Drosophila. During late larval stages three types of hemocytes are produced, plasmatocytes, crystal cells, and lamellocytes, and their differentiation is tightly controlled by conserved factors and signaling pathways. JAK/STAT is one of these pathways which have essential roles in vertebrate and fly hematopoiesis. We show that Stat has opposing cell-autonomous and non-autonomous functions in hemocyte differentiation. Using a clonal approach we established that loss of Stat in a set of prohemocytes in the cortical zone induces plasmatocyte maturation in adjacent hemocytes. Hemocytes lacking Stat fail to differentiate into plasmatocytes, indicating that Stat positively and cell-autonomously controls plasmatocyte differentiation. We also identified the GATA factor pannier (pnr) as a downstream target of Stat. By analyzing the phenotypes resulting from clonal loss and over-expression of pnr in lymph glands, we find that Pnr is positively regulated by Stat and specifically required for the differentiation of plasmatocytes. Stat and Pnr represent two essential factors controlling blood cell maturation in the developing lymph gland and exert their functions both in a cell-autonomous and non-cell-autonomous manner.  相似文献   

3.
4.
5.
Nodule formation is the predominant insect cellular defense reaction to bacterial challenges, responsible for clearing the largest proportion of infecting bacteria from hemolymph circulation. Hemocyte spreading behavior is a critical step in the nodulation process. It has been suggested that eicosanoids mediate several steps in the process. However, the influence of eicosanoids on hemocyte spreading has not been investigated in detail. To test the hypothesis that eicosanoids mediate hemocyte spreading behavior, I treated larvae of the tobacco hornworm, Manduca sexta, with eicosanoid biosynthesis inhibitors and later assessed plasmatocyte elongation on glass slides. Plasmatocytes from larvae treated with dexamethasone did not elongate to the extent of plasmatocytes from untreated control larvae. The dexamethasone effect on plasmatocyte elongation was expressed in a dose-dependent manner and was reversed by injecting dexamethasone-treated larvae with the eicosanoid-precursor fatty acid, arachidonic acid. Palmitic acid, which is not substrate for eicosanoid biosynthesis, did not reverse the influence of dexamethasone on plasmatocyte elongation. Finally, plasmatocytes from larvae treated with a range of eicosanoid biosynthesis inhibitors did not elongate to the extent of plasmatocytes from control larvae. Plasmatocyte width did not appear to be influenced in this study. These findings strongly support the idea that insect plasmatocyte elongation is influenced by eicosanoids.  相似文献   

6.
7.
8.
9.
We have investigated the blood cell types present in Drosophila at postembryonic stages and have analysed their modifications during development and under immune conditions. The anterior lobes of the larval hematopoietic organ or lymph gland contain numerous active secretory cells, plasmatocytes, few crystal cells, and a number of undifferentiated prohemocytes. The posterior lobes contain essentially prohemocytes. The blood cell population in larval hemolymph differs and consists mainly of plasmatocytes which are phagocytes, and of a low percentage of crystal cells which reportedly play a role in humoral melanisation. We show that the cells in the lymph gland can differentiate into a given blood cell lineage when solicited. Under normal nonimmune conditions, we observe a massive differentiation into active macrophages at the onset of metamorphosis in all lobes. Simultaneously, circulating plasmatocytes modify their adhesion and phagocytic properties to become pupal macrophages. All phagocytic cells participate in metamorphosis by ingesting doomed larval tissues. The most dramatic effect on larval hematopoiesis was observed following infestation by a parasitoid wasp. Cells within all lymph gland lobes, including prohemocytes from posterior lobes, massively differentiate into a new cell type specifically devoted to encapsulation, the lamellocyte.  相似文献   

10.
Juvenile hormone (JH) acts on membrane of follicle cells to induce ovarian patency for vitellogenesis, though it regulates various other physiological processes via putative intracellular receptors. This study suggests another JH membrane action by analyzing in vitro hemocyte behavior. In response to nonself, both granular cells and plasmatocytes of Spodoptera exigua can exhibit cell shape changes through spreading behaviors. Plasmatocytes were separated from total S. exigua hemocytes by Percoll gradient and exposed in vitro to an insect cytokine, plasmatocyte-spreading peptide (PSP), identified from Pseudoplusia includens. In response, the purified plasmatocytes spread in a dose-dependent manner from picomolar to micromolar concentrations. Interestingly, the PSP responses of plasmatocytes in S. exigua varied among different larval ages during fifth instar ( approximately 5 days at 25 degrees C) in a sensitivity order of late (5 days old)相似文献   

11.
The Drosophila GATA factor Serpent interacts with the RUNX factor Lozenge to activate the crystal cell program, whereas SerpentNC binds the Friend of GATA protein U-shaped to limit crystal cell production. Here, we identified a lozenge minimal hematopoietic cis-regulatory module and showed that lozenge-lacZ reporter-gene expression was autoregulated by Serpent and Lozenge. We also showed that upregulation of u-shaped was delayed until after lozenge activation, consistent with our previous results that showed u-shaped expression in the crystal cell lineage is dependent on both Serpent and Lozenge. Together, these observations describe a feed forward regulatory motif, which controls the temporal expression of u-shaped. Finally, we showed that lozenge reporter-gene activity increased in a u-shaped mutant background and that forced expression of SerpentNC with U-shaped blocked lozenge- and u-shaped-lacZ reporter-gene activity. This is the first demonstration of GATA:FOG regulation of Runx and Fog gene expression. Moreover, these results identify components of a Serpent cross-regulatory sub-circuit that can modulate lozenge expression. Based on the sub-circuit design and the combinatorial control of crystal cell production, we present a model for the specification of a dynamic bi-potential regulatory state that contributes to the selection between a Lozenge-positive and Lozenge-negative state.  相似文献   

12.
Plasmatocytes are a class of insect hemocytes important in the cellular defense response. In some species, they are phagocytic, protecting the insect from smaller pathogens. In many insects, they work in concert with other hemocytes (particularly other plasmatocytes and granular cells) to form nodules and to encapsulate foreign material. To perform these functions, plasmatocytes attach to, spread on, and surround suitable targets. Because of their importance, because we had previously observed that prolonged incubation of hemocytes in solutions containing the divalent cation chelator ethylenediaminetetraacetic acid (EDTA) inhibited plasmatocyte spreading, and because of the importance of divalent cations in many immune-related functions, we investigated the effect of calcium and magnesium on spreading of plasmatocytes from fifth instar Manduca sexta larvae. On glass slides, plasmatocytes spread more quickly and elongated in Grace's medium containing 5 mM calcium, compared to calcium-free medium. In the presence of calcium, plasmatocyte adhesion, spreading, and network formation were not visibly different in magnesium-free and magnesium-containing Grace's medium. Using immunomicroscopy with a monoclonal antibody specific for plasmatocytes, we measured the length and width of plasmatocytes incubated with several different concentrations of calcium. Plasmatocyte length positively correlated with calcium concentration to 5 mM (maximum concentration tested and approximately the hemolymph concentration). Mean plasmatocyte width was less in 0 and 5 mM calcium than in 0.05 or 0.5 mM calcium. On plastic, hemocytes survived longer than on glass (they survived beyond 24 h) and, in 5 mM calcium, formed an extensive network readily visible by phase-contrast microscopy. This network was never as extensive in the absence of calcium. Network formation in the absence of magnesium, but presence of calcium, resembled network formation in standard Grace's medium.  相似文献   

13.
We have investigated the blood cell types present in Drosophila at postembryonic stages and have analysed their modifications during development and under immune conditions. The anterior lobes of the larval hematopoietic organ or lymph gland contain numerous active secretory cells, plasmatocytes, few crystal cells, and a number of undifferentiated prohemocytes. The posterior lobes contain essentially prohemocytes. The blood cell population in larval hemolymph differs and consists mainly of plasmatocytes which are phagocytes, and of a low percentage of crystal cells which reportedly play a role in humoral melanisation. We show that the cells in the lymph gland can differentiate into a given blood cell lineage when solicited. Under normal nonimmune conditions, we observe a massive differentiation into active macrophages at the onset of metamorphosis in all lobes. Simultaneously, circulating plasmatocytes modify their adhesion and phagocytic properties to become pupal macrophages. All phagocytic cells participate in metamorphosis by ingesting doomed larval tissues. The most dramatic effect on larval hematopoiesis was observed following infestation by a parasitoid wasp. Cells within all lymph gland lobes, including prohemocytes from posterior lobes, massively differentiate into a new cell type specifically devoted to encapsulation, the lamellocyte.  相似文献   

14.
In mammalian intestine, adenosine deaminase (ADA) is expressed at high levels only along the villi of the duodenal epithelium. A duodenum-specific enhancer identified in the second intron of the human ADA gene controls this pattern of expression. This enhancer faithfully recapitulates this expression pattern in transgenic mice, when included in CAT reporter gene constructions. Multiple binding sites for PDX-1 and GATA factors were previously identified within the approximately 300-bp region that encompasses the enhancer. Mutation analyses demonstrated that binding of PDX-1 and of GATA-4 was absolutely essential for enhancer function. In the present study, we have identified additional enhancer binding sites for Cdx factors, for YY1, and for NFI family members. Detailed EMSA studies were used to confirm binding at these sites. This brings the number of confirmed binding sites within the enhancer to thirteen, with five different factors or family of factors contributing to the putative enhanceosome complex. Mutation analysis was utilized to examine the specific roles of the newly identified sites. Two sites were identified that bound both Cdx1 and Cdx2. Mutations were identified in these two sites that completely and specifically eliminated Cdx binding. In transgenic mice, these enhancer mutations dramatically changed the developmental timing of enhancer activation (delaying it by 2-3 weeks) without affecting other aspects of enhancer function. In the chromatin context of certain transgenic insertion sites, mutation of the two YY1 sites to specifically ablate binding caused a delay in enhancer activation similar to that observed with the Cdx mutations. No overt changes were observed from mutation of the NFI site.  相似文献   

15.
16.
A family of hemolymph peptides was previously identified in several lepidopteran insects, which exhibited multiple biological activities including rapid paralysis, blockage of growth and development, or stimulation of plasmatocyte spreading and aggregation. We synthesized Manduca sexta paralytic peptide 1 (PP1) and found that after it was injected into larvae, bleeding from wounds was dramatically reduced. PP1 also stimulated spreading and aggregation behavior of M. sexta plasmatocytes in vitro. Stimulation of plasmatocyte aggregation and adherence to the body wall may explain a decrease observed in the number of circulating plasmatocytes after injection of PP1. Such aggregates might rapidly form plugs in wounds to prevent bleeding. We cloned a cDNA for a Manduca paralytic peptide precursor, using polymerase chain reactions and cDNA library screening. The active 23-residue PP2 peptide encoded by this clone is at the carboxyl-terminal end of a precursor protein predicted to be 107 amino acid residues long after cleavage of a secretion signal peptide. Active PP2 was produced by processing of recombinant proPP2 by bovine factor Xa. A single proPP2 mRNA was present in fat body but not in hemocytes. The level of this mRNA was not affected by injection of bacteria into larvae. We produced recombinant proPP2 in Escherichia coli and used this protein to produce an antiserum. The antiserum detected proPP2 in plasma and was used to observe rapid proteolytic processing of proPP2 after hemolymph collection.  相似文献   

17.
Kind TV 《Tsitologiia》2003,45(1):14-25
On the basis of in vitro observation of live cells and examination of stained slides of larval and prepupal Calliphora vicina hemolymph, seven types of hemocytes have been detected: prohemocytes, stable and unstable hyaline cells, thrombocytoids, spindle cells, larval plasmatocytes, and plasmatocytes I-IV, a. The last representing sequential stages of one cell line differentiation. Prohemocytes are basic cells, from which other forms of hemocytes derive outside the hemopoietic tissue, i.e. in free hemolymph. At the last larval instar, three waves of hemopoiesis occur. Either wave tends to increase the general number of cells and to change the quality of hemocyte population. The first wave occurs at the close of larva feeding and is accompanied by increase in the number of hyaline hemocytes, thrombocytoids and larval plasmatocytes. The second wave of hemopoiesis occurs after the larva's crop emptying. In this period the main increase of hemocyte population occurs at the expense of prohemocytes and plasmatocytes I. The most significant (five-fold) explosion of the population of free hemocytes takes place at the onset of pupariation and correlates with the rise of ecdysone titer. At the first stage of this peak, the amount of plasmatocytes I sharply increases. Further on these are rapidly differentiated into plasmatocytes II and III. After the puparium formation, hemocytes are reduced in number. Plasmatocytes III phagocytose fragments of destroyed larval tissues, pass to the stage of plasmatocytes IV (macrophages), and partially settle on tissues.  相似文献   

18.
In most Lepidoptera, plasmatocytes and granulocytes are the two hemocyte classes capable of adhering to foreign targets. Previously, we identified plasmatocyte spreading peptide (PSP1) from the moth Pseudoplusia includens and reported that it induced plasmatocytes to rapidly spread on foreign surfaces. Here we examine whether the response of plasmatocytes to PSP1 was influenced by cell density or culture conditions, and whether PSP1 affected the adhesive state of granulocytes. Plasmatocyte spreading rates were clearly affected by cell density in the absence of PSP1 but spreading was density independent in the presence of PSP1. PSP1 also induced plasmatocytes in agarose-coated culture wells to form homotypic aggregations rather than spread on the surface of culture wells. In contrast, granulocytes rapidly spread in a density independent manner in the absence of PSP1, but were dose-dependently inhibited from spreading by the addition of peptide. An anti-PSP1 polyclonal antibody neutralized the spreading activity of synthetic PSP1. This antibody also neutralized the plasmatocyte spreading activity of granulocyte-conditioned medium, and significantly delayed plasmatocyte spreading when cells were cultured at a high density in unconditioned medium. These results suggested that the spreading activity derived from granulocytes is due in part to PSP1. Pretreatment of plasmatocytes with trypsin had no effect on PSP1-induced aggregation but PSP1-induced aggregations were readily dissociated by trypsin. This suggested that PSP1 is not an adhesion factor but induces adhesion by stimulating a change in the cell surface of plasmatocytes. Synthetic PSP1 also induced aggregation of plasmatocytes from other Lepidoptera indicating that regulation of hemocyte activity by PSP1-related peptides may be widespread. Arch.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号