首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Polyamine biosynthesis in intact cells can be exquisitely controlled with exogenous polyamines through the regulation of rate-limiting biosynthetic enzymes, particularly ornithine decarboxylase (ODC). In an attempt to exploit this phenomenon as an antiproliferative strategy, certain polyamine analogues have been identified [Porter, Cavanaugh, Stolowich, Ganis, Kelly & Bergeron (1985) Cancer Res. 45, 2050-2057] which lower ODC activity in intact cells, have no direct inhibitory effects on ODC, are incapable of substituting for spermidine (SPD) in supporting cell growth, and are growth-inhibitory at micromolar concentrations. In the present study, the most effective of these analogues, N1N8-bis(ethyl)SPD (BES), is compared with SPD in its ability to regulate ODC activity in intact L1210 cells and in the mechanism(s) by which this is accomplished. With respect to time and dose-dependence of ODC suppression, both polyamines closely paralleled one another in their response curves, although BES was slightly less effective than SPD. Conditions of minimal treatment leading to near-maximal ODC suppression (70-80%) were determined and found to be 3 microM for 2 h with either SPD or BES. After such treatment, ODC activity was fully recovered within 2-4 h when cells were re-seeded in drug-free media. By assessing BES or [3H]SPD concentrations in treated and recovered cells, it was possible to deduce that an intracellular accumulation of BES or SPD equivalent to less than 6.5% of the combined cellular polyamine pool was sufficient to invoke ODC regulatory mechanisms. Decreases in ODC activity after BES or SPD treatment were closely paralleled by concomitant decreases in ODC protein. Since cellular ODC mRNA was not similarly decreased by either BES or SPD, it was concluded that translational and/or post-translational mechanisms, such as increased degradation of ODC protein or decreased translation of ODC mRNA, were probably responsible for regulation of enzyme activity. Experimental evidence indicated that neither of these mechanisms seemed to be mediated by cyclic AMP or ODC-antizyme induction. On the basis of the consistent similarities between BES and SPD in all parameters studied, it is concluded that the analogue most probably acts by the same mechanisms as SPD in regulating polyamine biosynthesis.  相似文献   

2.
The enzyme ornithine decarboxylase (ODC) and its regulatory protein antizyme-1 (AZ1) are key regulators in the homeostasis of polyamines. To gain more insight into the exact intracellular distribution of ODC and AZ1, we performed immunocytochemical and Green Fluorescent Protein-fluorocytochemical studies in cultured human cervix carcinoma and human prostatic carcinoma (PC-346C) cells. ODC localization patterns varied from predominantly cytoplasmic to both cytoplasmic and nuclear staining, whereas AZ1 was mostly found in the nucleus. In cells that were synchronized in the mitotic phase, localization of both ODC and AZ1 changed from perinuclear at the beginning of mitosis into nucleoplasmic at close proximity to the chromosomes during meta-, ana- and telophase. Upon completion of mitosis, localization of ODC and AZ1 was reverted back to the cytoplasm, i.e., predominantly perinuclear immediately after cytokinesis. When PC-346C cells were treated with polyamines to induce AZ1-regulated ODC degradation, ODC was predominantly found in the nucleus and colocalized with immunoreactive AZ1. A comparable accumulation of ODC and AZ1 in the nucleus was found in PC-346C cells treated with the polyamine analog SL-11093. The present study suggests that AZ1 is involved in nucleocytoplasmic shuttling of ODC, which may be a prerequisite for ODC regulation and/or function.  相似文献   

3.
The induction of polyamine catabolism and its production of H2O2 have been implicated in the response to specific antitumor polyamine analogues. The original hypothesis was that analogue induction of the rate-limiting spermidine/spermine N1-acetyltransferase (SSAT) provided substrate for the peroxisomal acetylpolyamine oxidase (PAO), resulting in a decrease in polyamine pools through catabolism, oxidation, and excretion of acetylated polyamines and the production of toxic aldehydes and H2O2. However, the recent discovery of the inducible spermine oxidase SMO(PAOh1) suggested the possibility that the original hypothesis may be incomplete. To examine the role of the catabolic enzymes in the response of breast cancer cells to the polyamine analogue N1,N1-bis(ethyl)norspermine (BENSpm), a stable knockdown small interfering RNA strategy was used. BENSpm differentially induced SSAT and SMO(PAOh1) mRNA and activity in several breast cancer cell lines, whereas no N1-acetylpolyamine oxidase PAO mRNA or activity was detected. BENSpm treatment inhibited cell growth, decreased intracellular polyamine levels, and decreased ornithine decarboxylase activity in all cell lines examined. The stable knockdown of either SSAT or SMO(PAOh1) reduced the sensitivity of MDA-MB-231 cells to BENSpm, whereas double knockdown MDA-MB-231 cells were almost entirely resistant to the growth inhibitory effects of the analogue. Furthermore, the H2O2 produced through BENSpm-induced polyamine catabolism was found to be derived exclusively from SMO(PAOh1) activity and not through PAO activity on acetylated polyamines. These data suggested that SSAT and SMO(PAOh1) activities are the major mediators of the cellular response of breast tumor cells to BENSpm and that PAO plays little or no role in this response.  相似文献   

4.
Synthesis and uptake are two important regulated mechanisms by which eukaryotic cells maintain polyamine levels. The role that loss of synthesis and/or uptake regulation plays in mediating putrescine toxicity was investigated by comparing toxicity in an ornithine decarboxylase (ODC)-deficient Chinese hamster ovary cell line (C55.7) with a functional putrescine transport system and an ODC-overproducing rat hepatoma cell line (DH23b), which are transport regulation deficient. When C55.7 cells were transfected with either mouse ODC (M) or trypanosome ODC (Tb), intracellular putrescine content increased slightly in C55.7(Tb-ODC), compared to C55.7(M-ODC), due to the lack of response of Tb-ODC to polyamine regulation. The increase in putrescine content resulting from loss of ODC regulation had no impact on cell growth and viability. When the feedback repression of polyamine uptake was blocked with cycloheximide, C55.7 cells transfected with either ODC construct accumulated very high levels of putrescine from the medium, and underwent apoptosis in a putrescine dose-dependent manner. A similar correlation of deregulated putrescine uptake and increased apoptotic cells was observed in DH23b cells. These data demonstrate that loss of feedback regulation on the polyamine transport system, but not ODC activity, is sufficient to induce apoptosis. Thus, downregulation of the transport system is necessary to prevent accumulation of cytotoxic putrescine levels in rodent cells.  相似文献   

5.
Vascular smooth muscle cells (SMC) are able to proliferate when cultured on plates, but become differentiated when maintained in three-dimensional type I collagen matrices (honeycombs). SMC grown in honeycombs contained a low level of polyamines due to the presence of antizyme 1 (AZ1), a negative regulator of ornithine decarboxylase (ODC) and of polyamine uptake. To clarify the role of AZ1 in differentiation of SMC in honeycombs, an ODC gene was stably transfected into SMC (ODC-SMC). Although proliferation of ODC-SMC on plates was accelerated together with an increase in phosphorylated focal adhesion kinase (FAK) and a decrease in α-actin and myosin, maker proteins of differentiation, growth of ODC-SMC ceased in honeycombs similarly to normal SMC with a low level of phosphorylated FAK and a high level of α-actin and myosin. AZ1 expression in ODC-SMC on plates was low, but that in honeycombs was high. Antizyme in ODC-SMC in honeycombs not only decreased the level of ODC but also inhibited polyamine uptake activity. These results taken together suggest that low levels of polyamines caused by AZ1 in SMC in honeycombs inhibit phosphorylation of FAK and enhance expression of α-actin and myosin, resulting in differentiation through inhibition of focal adhesions.  相似文献   

6.
Although intracellular polyamine levels are highly regulated, it is unclear whether intracellular putrescine (PUT), spermidine (SPD), or spermine (SPM) levels act as a sensor to regulate their synthesis or uptake. Polyamines have been shown to induce AZ1 expression through a unique +1 frameshifting mechanism. However, under physiological conditions which particular polyamine induces AZ1, and thereby ODC activity, is unknown due to their inter-conversion. In this study we demonstrate that SPD regulates AZ1 expression under physiological conditions in IEC-6 cells. PUT and SPD showed potent induction of AZ1 within 4 h in serum-starved confluent cells grown in DMEM (control) medium. Unlike control cells, PUT failed to induce AZ1 in cells grown in DFMO containing medium; however, SPD caused a robust AZ1 induction in these cells. SPM showed very little effect on AZ1 expression in both the control and polyamine-depleted cells. Only SPD induced AZ1 when S-adenosylmethionine decarboxylase (SAMDC) and/or ODC were inhibited. Surprisingly, addition of DENSpm along with DFMO restored AZ1 induction by putrescine in polyamine-depleted cells suggesting that the increased SSAT activity in response to DENSpm converted SPM to SPD, leading to the expression of AZ1. This study shows that intracellular SPD levels controls AZ1 synthesis.  相似文献   

7.
8.
Antizymes (AZs) are polyamine‐induced proteins that negatively regulate cellular polyamine synthesis and uptake. Three antizyme isoforms are conserved among mammals. AZ1 and AZ2 have a broad tissue distribution, while AZ3 is testis specific. Both AZ1 and AZ2 inhibit ornithine decarboxylase (ODC) activity by binding to ODC monomer and target it to the 26S proteasome at least in vivo. Both also inhibit extra‐cellular polyamine uptake. Despite their being indistinguishable by these criteria, we show here using enhanced green fluorescent protein (EGFP)‐AZ2 fusion protein that in mammalian cells, the subcellular location of AZ2 is mainly in the nucleus, and is different from that of AZ1. The C‐terminal part of AZ2 is necessary for the nuclear distribution. Within a few hours, a shift in the distribution of EGFP‐AZ2 fusion protein from cytoplasm to the nucleus or from nucleus to cytoplasm is observable in NIH3T3 cells. In addition, we found that in cells a majority of AZ2, but not AZ1, is phosphorylated at Ser‐186, likely by protein kinase CK2. There may be a specific function of AZ2 in the nucleus. J. Cell. Biochem. 108: 1012–1021, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Polyamines are essential organic cations with multiple cellular functions. Their synthesis is controlled by a feedback regulation whose main target is ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. In mammals, ODC has been shown to be inhibited and targeted for ubiquitin-independent degradation by ODC antizyme (AZ). The synthesis of mammalian AZ was reported to involve a polyamine-induced ribosomal frameshifting mechanism. High levels of polyamine therefore inhibit new synthesis of polyamines by inducing ODC degradation. We identified a previously unrecognized sequence in the genome of Saccharomyces cerevisiae encoding an orthologue of mammalian AZ. We show that synthesis of yeast AZ (Oaz1) involves polyamine-regulated frameshifting as well. Degradation of yeast ODC by the proteasome depends on Oaz1. Using this novel model system for polyamine regulation, we discovered another level of its control. Oaz1 itself is subject to ubiquitin-mediated proteolysis by the proteasome. Degradation of Oaz1, however, is inhibited by polyamines. We propose a model, in which polyamines inhibit their ODC-mediated biosynthesis by two mechanisms, the control of Oaz1 synthesis and inhibition of its degradation.  相似文献   

10.
The mechanism of the antiproliferation effect of N1,N12-bis(ethyl)spermine (BESPM) was studied in detail using mouse FM3A cells, since this polyamine analogue mimics the functions of spermine in several aspects [Igarashi, K., Kashiwagi, K., Fukuchi, J., Isobe, Y., Otomo, S. & Shirahata, A. (1990) Biochem. Biophys. Res. Commun. 172, 715-720]. Our results indicate that not only the decrease in sperimine and spermine caused by BESPM but also its accumulation play important roles on the inhibition of cell growth by BESPM, since BESPM accumulated in cells at a concentration fivefold that of spermidine in control cells. In comparison with the polaymine-deficient cells caused by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, and ethylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, the behavior of polyamine-deficient cells caused by BESPM was different as follows: the inhibition of cell growth by BESPM was not abrogated by spermine or spermidine; polyamine uptake, which is stimulated during polyamine deficiency, was greatly inhibited, while spermidine/spermine N1-acetyltransferase activity, which is inhibited during polyamine deficiency, was enhanced in BESPM-treated cells; thymidine kinase activity did not decrease in BESPM-treated cells; inhibition of cell growth and macromolecule synthesis by BESPM correlated with the swelling of mitochondria and the decrease in ATP content; BESPM caused cell death when incubated together for several days. The role of BESPM accumulation on inhibition of cell growth is discussed.  相似文献   

11.
Ornithine decarboxylase (ODC), antizyme (AZ), and antizyme inhibitor (AIn) play a key role in regulation of intracellular polyamine levels by forming a regulatory circuit through their interactions. To gain insight into their functional importance in cell growth and differentiation, we systematically examined the changes of their expression, cellular polyamine contents, expression of genes related to polyamine metabolism, and β-casein gene expression during murine mammary gland development. The activity of ODC and AZ1 as well as putrescine level were low in the virgin and involuting stages, but they increased markedly during late pregnancy and early lactation when mammary cells proliferate extensively and begin to augment their differentiated function. The level of spermidine and expression of genes encoding spermidine synthase and AIn increased in a closely parallel manner with that of casein gene expression during pregnancy and lactation. On the other hand, the level of spermidine/spermine N 1-acetyltransferase (SSAT) mRNA and AZ2 mRNA decreased during those periods. Immunohistochemical analysis showed the translocation of ODC and AIn between the nucleus and cytoplasm and the continuous presence of AZ in the nucleus during gland development. Reduction of AIn by RNA interference inhibited expression of β-casein gene stimulated by lactogenic hormones in HC11 cells. In contrast, reduction of AZ by AZsiRNA resulted in the small increase of β-casein gene expression. These results suggested that AIn plays an important role in the mammary gland development by changing its expression, subcellular localization, and functional interplay with AZ.  相似文献   

12.
ODC (ornithine decarboxylase), the rate-limiting enzyme in polyamine biosynthesis, is regulated by specific inhibitors, AZs (antizymes), which in turn are inhibited by AZI (AZ inhibitor). We originally identified and cloned the cDNA for a novel human ODC-like protein called ODCp (ODC paralogue). Since ODCp was devoid of ODC catalytic activity, we proposed that ODCp is a novel form of AZI. ODCp has subsequently been suggested to function either as mammalian ADC (arginine decarboxylase) or as AZI in mice. Here, we report that human ODCp is a novel AZI (AZIN2). By using yeast two-hybrid screening and in vitro binding assay, we show that ODCp binds AZ1-3. Measurements of the ODC activity and ODC degradation assay reveal that ODCp inhibits AZ1 function as efficiently as AZI both in vitro and in vivo. We further demonstrate that the degradation of ODCp is ubiquitin-dependent and AZ1-independent similar to the degradation of AZI. We also show that human ODCp has no intrinsic ADC activity.  相似文献   

13.
Regulation of polyamine transport in Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
Control Chinese hamster ovary (CHO) cells and mutant CHO cells lacking ornithine decarboxylase activity (CHODC-) were used to study the regulation of polyamine uptake. It was found that the transport system responsible for this uptake was regulated by intracellular polyamine levels and that this regulation was responsible for the maintenance of physiological intracellular levels under extreme conditions such as polyamine deprivation or exposure to exogenous polyamines. Polyamine transport activity was enhanced by decreases in polyamine content produced either by inhibition of ornithine decarboxylase with alpha-difluoromethylornithine in CHO cells or via polyamine starvation of CHODC- cells. The provision of exogenous polyamines resulted in rapid and large increases in intracellular polyamine content followed by decreased polyamine transport activity. Soon after this decrease in uptake activity, intracellular polyamine levels then fell to near control values. Cells grown in the presence of exogenous polyamines maintained intracellular polyamine levels at values similar to those of control cells. Protein synthesis was necessary for the increase in transport in response to polyamine depletion, but appeared to play no role in decreasing polyamine transport. Bis(ethyl) polyamine analogues mimicked polyamines in the regulation of polyamine transport but this process was relatively insensitive to regulation by methylglyoxal bis(guanylhydrazone), a spermidine analogue known to enter cells via this transport system and to accumulate to very high levels.  相似文献   

14.
The role of p38 mitogen-activated protein kinase (MAPK) in IL-1-induced growth inhibition was investigated using IL-1-sensitive human melanoma A375-C2-1 cells and IL-1-resistant A375-R8 cells. In both cells, p38 MAPK was activated by IL-1. A selective inhibitor for p38 MAPK, SB203580, almost completely recovered the IL-1-induced growth inhibition in A375-C2-1 cells. IL-1-induced IL-6 production was also suppressed by SB203580. However, the reversal effect of SB203580 was not due to the suppression of IL-6 production because the SB203580 effect was still observed in the presence of exogenous IL-6. Down-regulation of ornithine decarboxylase (ODC) activity as well as its protein level has been shown to be essential for IL-1-induced growth inhibition. SB203580 also reversed the IL-1-induced down-regulation of ODC activity and intracellular polyamine levels without affecting ODC mRNA levels in A375-C2-1 cells. In IL-1-resistant R8 cells, however, IL-1 only slightly suppressed ODC activity. In A375-C2-1 cells, the mRNA expression level of antizyme (AZ), a regulatory factor of ODC activity, has been shown to be up-regulated by IL-1. IL-1-induced up-regulation of AZ mRNA level was not affected by SB203580. These findings demonstrate that p38 MAPK plays an important role in IL-1-induced growth inhibition in A375 cells through down-regulating ODC activity without affecting the level of ODC mRNA and AZ mRNA. In IL-1-resistant A375-R8 cells, IL-1 signaling pathway is deficient between p38 MAPK activation and down-regulation of ODC activity.  相似文献   

15.
The regulation of ornithine decarboxylase (ODC) activity by the polyamine derivatives N1,N8-bis(ethyl)-spermidine and N1,N12-bis(ethyl)spermine was studied using a line of L1210 cells resistant to alpha-difluoromethylornithine (D-R cells), which contain very high levels of ODC, and a synthetic mRNA prepared from a plasmid containing an insert corresponding to ODC mRNA adjacent to an SP6 RNA polymerase promoter. Studies in which ODC protein was labeled in the D-R cells by exposure to [35S]methionine indicated that the polyamine derivatives and their physiological counterparts led to an increased rate of degradation of ODC and to a rapid reduction in ODC synthesis without affecting the content of ODC mRNA. Direct evidence that the polyamine derivatives act by inhibiting the translation of the ODC mRNA was obtained by studying their effects on the translation of ODC mRNA in reticulocyte lysates. This translation was strongly inhibited by the addition of N1,N8-bis(ethyl)spermidine, spermidine, N1,N12-bis(ethyl)spermine, or spermine but was not affected much by putrescine. The inhibition of the translation of ODC mRNA by either of the bis(ethyl) polyamine derivatives occurred at concentrations which stimulated total protein synthesis showing the selectivity of the reduction in ODC. The effects of polyamine derivatives and polyamines on translation of the plasmid-derived ODC mRNA were identical with those found with the D-R L1210 cell mRNA. This synthetic ODC mRNA lacks 261 bases of the 5'-leader sequences and 200 bases plus the poly(A) section from the 3'-nontranslated sequence. Therefore, these regions appear not to influence sensitivity of the ODC mRNA to inhibition of translation by polyamine derivatives.  相似文献   

16.
Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the mechanism through which amino acids influence the growth of intestinal mucosa. This brief article reviews the experiments leading to the information presented above. We also present evidence from the literature that AZ acts directly to inhibit cell proliferation and increase the rate of apoptosis. Finally, we discuss future experiments that will determine the role of AZ in the regulation of intestinal mucosal growth by amino acids.  相似文献   

17.
Polyamine-biosynthesis activity is known to be negatively regulated by intracellular polyamine pools. Accordingly, treatment of cultured L1210 cells with 10 microM-spermine rapidly and significantly lowered ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) activities in a sequential manner. By contrast, treatment for 48 h with 10 microM of the unsaturated spermine analogue 6-spermyne lowered AdoMetDC activity, but not ODC activity. An initial decrease in ODC activity at 2 h was attributed to a transient increase in free intracellular spermidine and spermine brought about through their displacement by the analogue. Thereafter, ODC activity recovered steadily to control values as 6-spermyne pools increased and spermidine and spermine pools decreased owing to analogue suppression of AdoMetDC activity. The apparent ability of 6-spermyne to regulate AdoMetDC, but not ODC, activity suggests an interesting structure-function correlation and demonstrates that the typical co-regulation of these enzyme activities can be dissociated. This, in turn, may reflect the existence of independent regulatory binding sites for the two enzymes.  相似文献   

18.
Ornithine decarboxylase (ODC) is the first enzyme in polyamine biosynthesis in numerous living organisms, from bacteria to mammalian cells. Its control is under negative feedback regulation by the end products of the pathway. In dimorphic fungi, ODC activity and therefore polyamine concentrations are related to the morphogenetic process. From the fission yeast Schizosaccharomyces pombe to human, polyamines induce antizyme synthesis which in turn inactivates ODC. This is hydrolyzed by the 26S proteasome without ubiquitination. The regulatory mechanism of antizyme on polyamines is conserved, although to date no antizyme homology has been identified in some fungal species. The components that are responsible for regulating polyamine levels in cells and the current knowledge of ODC regulation in dimorphic fungi are presented in this review. ODC degradation is of particular interest because inhibitors of this pathway may lead to the discovery of novel antifungal drugs.  相似文献   

19.
20.
To develop a model system to investigate mechanisms of antiproliferative action of bis(ethyl)polyamine analogues, intermittent analogue treatments followed by recovery periods in drug-free medium were used to select an N(1), N(12)-bis(ethyl)spermine-resistant derivative of the Chinese hamster ovary cell line C55.7. The resulting C55.7Res line was at least 10-fold resistant to N(1),N(12)-bis(ethyl)spermine and N(1), N(11)-bis(ethyl)norspermine. The stability of the resistance in the absence of selection pressure was >/=9 months, indicating that a heritable genotypic change was responsible for the resistance phenotype. Polyamine transport alterations and multi-drug resistance were eliminated as causes of the resistance. Spermidine/spermine N(1)-acetyltransferase (SSAT) activity and regulation were altered in C55.7Res cells as basal activity was decreased, and no activity induction resulted from exposure to analogue concentrations, which caused 300-fold enzyme induction in parental cells. SSAT mRNA levels in the absence and presence of analogue were unchanged, but no SSAT protein was detected in C55.7Res cells. A point mutation, which results in the change leucine156 (a fully conserved residue) to phenylalanine, was identified in the C55.7Res SSAT cDNA. Expression of wtSSAT activity in C55.7Res cells restored sensitivity to bis(ethyl)polyamines. These results provided definitive evidence that SSAT activity is a critical target of the cytotoxic action of these analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号