首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restoration of the colonic epithelial barrier is an important response during colitis. L-arginine (L-Arg) is a semiessential amino acid that reduces murine colitis induced by Citrobacter rodentium. Cationic amino acid transporter (CAT) proteins increase L-Arg uptake into cells. L-Arg is utilized to produce nitric oxide (NO), by inducible NO synthase (iNOS), or L-ornithine (L-Orn) by arginase (Arg) enzymes. The latter is followed by generation of polyamines by ornithine decarboxylase (ODC) and L-proline (L-Pro) by ornithine aminotransferase (OAT). We show that L-Arg enhanced epithelial restitution in conditionally immortalized young adult mouse colon (YAMC) cells in a wound repair model, and in isolated mouse colonic epithelial cells (CECs), using a cell migration assay. Restitution was impaired by C. rodentium. Wounding induced CAT2, and inhibition of L-Arg uptake by the competitive inhibitor L-lysine (L-Lys) or by CAT2 shRNA, but not CAT1 shRNA, decreased restitution. Migration was impaired in CECs treated with L-Lys or from CAT2(-/-) mice. Wounding increased Arg1 expression, and inhibition of arginase with S-(2-boronoethyl)-L-cysteine (BEC) or Arg1 shRNA inhibited restitution in YAMC cells; cell migration in CECs was also impaired by BEC. Inhibition of ODC or iNOS did not alter restitution. L-Orn or L-Pro restored restitution in cells treated with BEC or Arg1 shRNA, whereas the polyamine putrescine had no benefit. Wounding increased OAT levels, OAT shRNA inhibited restitution, and L-Pro restored restitution in cells with OAT knockdown. Uptake of L-Arg, and its metabolism by Arg1 to L-Orn and conversion to L-Pro by OAT is essential for colonic epithelial wound repair.  相似文献   

2.
The role of ornithine decarboxylase (ODC) in polyamine metabolism has long been established, but the exact source of ornithine has always been unclear. The arginase enzymes are capable of producing ornithine for the production of polyamines and may hold important regulatory functions in the maintenance of this pathway. Utilizing our unique set of arginase single and double knockout mice, we analyzed polyamine levels in the livers, brains, kidneys, and small intestines of the mice at 2 wk of age, the latest timepoint at which all of them are still alive, to determine whether tissue polyamine levels were altered in response to a disruption of arginase I (AI) and II (AII) enzymatic activity. Whereas putrescine was minimally increased in the liver and kidneys from the AII knockout mice, spermidine and spermine were maintained. ODC activity was not greatly altered in the knockout animals and did not correlate with the fluctuations in putrescine. mRNA levels of ornithine aminotransferase (OAT), antizyme 1 (AZ1), and spermidine/spermine-N1-acetyltransferase (SSAT) were also measured and only minor alterations were seen, most notably an increase in OAT expression seen in the liver of AI knockout and double knockout mice. It appears that putrescine catabolism may be affected in the liver when AI is disrupted and ornithine levels are highly reduced. These results suggest that endogenous arginase-derived ornithine may not directly contribute to polyamine homeostasis in mice. Alternate sources such as diet may provide sufficient polyamines for maintenance in mammalian tissues. ornithine; putrescine; spermidine; spermine; decarboxylase  相似文献   

3.
4.
The naturally occurring polyamines, spermidine, spermine, and their precursor putrescine, play indispensible roles in both prokaryotic and eukaryotic cells, from basic DNA synthesis to regulation of cell proliferation and differentiation. The rate-limiting polyamine biosynthetic enzymes, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase, are essential for mammalian development, with knockout of the genes encoding these enzymes, Odc1 and Amd1, causing early embryonic lethality in mice. In muscle, the involvement of polyamines in muscle hypertrophy is suggested by the concomitant increase in cardiac and skeletal muscle mass and polyamine levels in response to anabolic agents including β-agonists. In addition to β-agonists, androgens, which increase skeletal mass and strength, have also been shown to stimulate polyamine accumulation in a number of tissues. In muscle, androgens act via the androgen receptor to regulate expression of polyamine biosynthetic enzyme genes, including Odc1 and Amd1, which may be one mechanism via which androgens promote muscle growth. This review outlines the role of polyamines in proliferation and hypertrophy, and explores their possible actions in mediating the anabolic actions of androgens in muscle.  相似文献   

5.
Catecholamines stimulate cardiac contractility through beta(1)-adrenergic receptors (beta(1)-ARs), which in humans are polymorphic at amino acid residue 389 (Arg/Gly). We used cardiac-targeted transgenesis in a mouse model to delineate mechanisms accounting for the association of Arg389 with human heart failure phenotypes. Hearts from young Arg389 mice had enhanced receptor function and contractility compared with Gly389 hearts. Older Arg389 mice displayed a phenotypic switch, with decreased beta-agonist signaling to adenylyl cyclase and decreased cardiac contractility compared with Gly 389 hearts. Arg389 hearts had abnormal expression of fetal and hypertrophy genes and calcium-cycling proteins, decreased adenylyl cyclase and G alpha(s) expression, and fibrosis with heart failure This phenotype was recapitulated in homozygous, end-stage, failing human hearts. In addition, hemodynamic responses to beta-receptor blockade were greater in Arg389 mice, and homozygosity for Arg389 was associated with improvement in ventricular function during carvedilol treatment in heart failure patients. Thus the human Arg389 variant predisposes to heart failure by instigating hyperactive signaling programs leading to depressed receptor coupling and ventricular dysfunction, and influences the therapeutic response to beta-receptor blockade.  相似文献   

6.
Transgenic mice expressing proteins altering polyamine levels in a tissue-specific manner have considerable promise for evaluation of the roles of polyamines in normal, hypertrophic and neoplastic growth. This short review summarizes the available transgenic models. Mice with large increases in ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase or antizyme, a protein regulating polyamine synthesis by reducing polyamine transport and ODC in the heart, have been produced using constructs in which the protein is expressed from the alpha -myosin heavy-chain promoter. These mice are useful in studies of the role of polyamines in hypertrophic growth. Expression from keratin promoters has been used to target increased synthesis of ODC, spermidine/spermine-N(1)-acetyltransferase (SSAT) and antizyme in the skin. Such expression of ODC leads to an increased sensitivity to chemical and UV carcinogenesis. Expression of antizyme inhibits carcinogenesis in skin and forestomach. Expression of SSAT increases the incidence of skin papillomas and their progression to carcinomas in response to a two-stage carcinogenesis protocol. These results establish the importance of polyamines in carcinogenesis and neoplastic growth and these transgenic mice will be valuable experimental tools to evaluate the importance of polyamines in mediating responses to oncogenes and studies of cancer chemoprevention.  相似文献   

7.
Cardiac hypertrophy and function were studied 6 wk after constriction of the thoracic aorta (TAC) in transgenic (TG) mice expressing constitutively active mutant alpha(1B)-adrenergic receptors (ARs) in the heart. Hearts from sham-operated TG animals and nontransgenic littermates (WT) were similar in size, but hearts from TAC/TG mice were larger than those from TAC/WT mice, and atrial natriuretic peptide mRNA expression was also higher. Lung weight was markedly increased in TAC/TG animals, and the incidence of left atrial thrombus formation was significantly higher. Ventricular contractility in anesthetized animals, although it was increased in TAC/WT hearts, was unchanged in TAC/TG hearts, implying cardiac decompensation and progression to failure in TG mice. There was no increase in alpha(1A)-AR mRNA expression in TAC/WT hearts, and expression was significantly reduced in TAC/TG hearts. These findings show that cardiac expression of constitutively actively mutant alpha(1B)-ARs is detrimental in terms of hypertrophy and cardiac function after pressure overload and that increased alpha(1A)-AR mRNA expression is not a feature of the hypertrophic response in this murine model.  相似文献   

8.
An experiment was conducted to determine the effect of feeding ornithine in combination with alpha-aminoisobutyric acid (AIB), an inhibitor of arginase, on the regulation of polyamine synthesis in chicks. A total of 48 chicks with genetically elevated renal arginase activity was fed diets containing crystalline amino acids and 1% AIB with or without 2% ornithine. Feeding AIB reduced renal arginase activity, while renal and hepatic ornithine decarboxylase (ODC) activity increased. Feeding AIB plus ornithine caused no further reduction in renal arginase activity compared with that in chicks fed the AIB-supplemented diet. Renal and hepatic ODC activities, however, fell to below control levels. Renal, hepatic, and breast muscle ornithine concentrations increased substantially when ornithine was fed. AIB plus ornithine increased renal putrescine and spermidine concentrations. It was concluded that AIB could partially overcome the ornithine-induced inhibition of ODC activity. These findings support the hypothesis that dietary manipulation of precursor amino acids of polyamines in the presence of metabolites that induce ODC activity can influence tissue polyamine concentrations.  相似文献   

9.
Ornithine decarboxylase (ODC) catalyzes the first step in the polyamine biosynthetic pathway, a highly regulated pathway in which activity increases during rapid growth. Other enzymes also metabolize ornithine, and in hepatomas, rate of growth correlates with decreased activity of these other enzymes, which thus channels more ornithine to polyamine biosynthesis. Ornithine is produced from arginase cleavage of arginine, which also serves as the precursor for nitric oxide production. To study whether short-term coordination of ornithine and arginine metabolism exists in rat colon, ODC, ornithine aminotransferase (OAT), arginase, ornithine, arginine, and polyamine levels were measured after two stimuli (refeeding and/or deoxycholate exposure) known to synergistically induce ODC activity. Increased ODC activity was accompanied by increased putrescine levels, whereas OAT and arginase activity were reduced by either treatment, accompanied by an increase in both arginine and ornithine levels. These results indicate a rapid reciprocal change in ODC, OAT, and arginase activity in response to refeeding or deoxycholate. The accompanying increases in ornithine and arginine concentration are likely to contribute to increased flux through the polyamine and nitric oxide biosynthetic pathways in vivo.  相似文献   

10.
In confluent and serum-starved embryonic heart cell cultures, the addition of serum (10%), glucagon (GLU, 0.1 microM) or isoproterenol (ISO, 10 microM), causes the onset of ornithine decarboxylase (ODC) activity, with a maximum after 5-6 hr. This is paralleled by polyamine accumulation and by the induction of TAT, which, in the case of GLU and ISO, exhibits maximal activity at 4-3 hr respectively, followed by a net decline. Cyclic AMP (cAMP) also accumulates after exposure to GLU or ISO. However, under different conditions of ODC inhibition, serum fails to induce TAT, thus supporting a relevant role of cellular polyamines in serum action. Conversely, cAMP and TAT responses to GLU or ISO are markedly improved under prevention of polyamine accumulation, which also leads to a longer lasting TAT inducibility. The suggestion is made that polyamines are not required in the cAMP-dependent mechanism of TAT induction, but rather in the restoration of the basal activity of the enzyme.  相似文献   

11.
Polyamines (putrescine, spermidine, and spermine) are essential for placental growth and angiogenesis. However, little is known about changes in polyamine synthesis associated with development of the ovine conceptus (embryo/fetus and associated placental membranes). We hypothesized that rates of placental polyamine synthesis were maximal during the rapid placental growth that occurs in the first half of pregnancy. This hypothesis was tested using ewes between Days 30 and 140 of gestation. Columbia cross-bred ewes were hysterectomized on Days 30, 40, 60, 80, 100, 120, or 140 of gestation (Day 0 = mating; n = 4 ewes/day) to obtain placentomes, intercotyledonary placenta, intercaruncular endometrium, and allantoic as well as amniotic fluids. The tissues were analyzed for ornithine decarboxylase (ODC) and arginase activities; arginine, ornithine, and polyamine concentrations; and polyamine synthesis using radiochemical and chromatographic methods. Maximal ODC and arginase activities and the highest rates of polyamine synthesis were observed in all tissues on Day 40 of gestation. Concentrations of ornithine and polyamines in placentomes and intercaruncular endometrium also peaked on Day 40 of gestation. In ovine allantoic and amniotic fluids, polyamines were most abundant during early (Days 40-60) and late (Days 100-140) gestation, respectively. Amniotic fluid spermine increased progressively with advancing gestation. Results of the present study indicate metabolic coordination among the several integrated pathways that support high rates of polyamine synthesis in the placenta and endometrium during early pregnancy. Our findings may have important implications for both intrauterine growth retardation and fetal origins of diseases in adults.  相似文献   

12.
L-Arginine, the sole substrate for the nitric oxide (NO) synthase (NOS) enzyme in producing NO, is also a substrate for arginase. We examined normal feline hearts and hearts with compensated left ventricular (LV) hypertrophy (LVH) produced by ascending aorta banding. Using Western blot analysis, we examined the abundance of arginase isozymes in crude homogenates and isolated cardiac myocytes obtained from the LVs of normal and LVH hearts. We examined the functional significance of myocyte arginase via measurement of shortening and intracellular calcium in isolated myocytes in the presence and absence of boronoethyl chloride (BEC), a specific pharmacological inhibitor of arginase. Both arginase I and II were detected in crude myocardial homogenates, but only arginase I was present in isolated cardiac myocytes. Arginase I was downregulated in LVH compared with normal. Inhibition of arginase with BEC reduced fractional shortening, maximal rate of shortening (+dL/dt) and relengthening (-dL/dt), and the peak of the free cytosolic calcium transient in normal myocytes but did not affect these parameters in LVH myocytes. These negative inotropic actions of arginase inhibition were associated with increases in cGMP generation. These studies indicate that only arginase I is present in cardiac myocytes where it tends to limit NO and cGMP production with the effect of supporting basal contractility. In experimental LVH induced by pressure overload, our studies demonstrate reduced arginase I expression and reduced functional significance, allowing greater arginine substrate availability for NO/cGMP signaling.  相似文献   

13.
Protective role of arginase in a mouse model of colitis   总被引:5,自引:0,他引:5  
Arginase is the endogenous inhibitor of inducible NO synthase (iNOS), because both enzymes use the same substrate, l-arginine (Arg). Importantly, arginase synthesizes ornithine, which is metabolized by the enzyme ornithine decarboxylase (ODC) to produce polyamines. We investigated the role of these enzymes in the Citrobacter rodentium model of colitis. Arginase I, iNOS, and ODC were induced in the colon during the infection, while arginase II was not up-regulated. l-Arg supplementation of wild-type mice or iNOS deletion significantly improved colitis, and l-Arg treatment of iNOS(-/-) mice led to an additive improvement. There was a significant induction of IFN-gamma, IL-1, and TNF-alpha mRNA expression in colitis tissues that was markedly attenuated with l-Arg treatment or iNOS deletion. Treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine worsened colitis in both wild-type and iNOS(-/-) mice. Polyamine levels were increased in colitis tissues, and were further increased by l-Arg. In addition, in vivo inhibition of ODC with alpha-difluoromethylornithine also exacerbated the colitis. Taken together, these data indicate that arginase is protective in C. rodentium colitis by enhancing the generation of polyamines in addition to competitive inhibition of iNOS. Modulation of the balance of iNOS and arginase, and of the arginase-ODC metabolic pathway may represent a new strategy for regulating intestinal inflammation.  相似文献   

14.
The animal models of myocardial injury induced by systemic β-adrenergic receptor agonist administration represent an experimental approach of persisting interest. These models were found useful especially for studies of structural and functional adaptation of myocardium during the progression of cardiac adaptive response towards maladaptive hypertrophy and insufficiency. The pathological alterations induced by isoproterenol (ISO) do not develop evenly. The ISO models may contribute effectively to understanding of pathologies in signal transduction, energetics, excitability and contractility that may contribute concomitantly to cardiac dysfunction and heart failure. In this minireview we focused on the alterations in general characteristics and heart function as well as on the morphological changes of cardiomyocytes developed during ISO administration. The morphological alterations within the cellular macro- and microdomains correspond to the electrical remodelling and contractile dysfunction of ventricular myocardium that could be used to identify pathological changes ranging from hypertrophy to failing heart.  相似文献   

15.
U R Tipnis  C Skiera 《Cytobios》1989,57(229):101-108
Ornithine decarboxylase activities (ODC) and polyamine levels were determined in five cardiac regions of the rat heart, following daily administration of 1 mg/kg of thyroxine, in the right and left atria, the right and left ventricles and the septum. The thyroxine stimulated ODC activity in all five regions of the heart. Enzyme activity in the left atrium and the septum peaked a day earlier than in other regions and the decline of ODC activity was slower. Putrescine in control animals was present in all regions except the right atrium, where its content was below detectable levels. Following the administration of thyroxine, the putrescine content of the left atrium, the right ventricle and the septum declined, while spermidine and spermine levels remained unchanged. In direct contrast to the other regions of the heart, thyroxine stimulated an increase in polyamines, as well as in weight which occurred exclusively in the left ventricle. These findings suggest a causal relationship between increased polyamines and hypertrophy.  相似文献   

16.
Polyamine synthesis from proline in the developing porcine placenta   总被引:1,自引:0,他引:1  
Polyamines (putrescine, spermidine, and spermine) are essential for placental growth and angiogenesis. However, little is known about polyamine synthesis in the porcine placenta during conceptus development. The present study was conducted to test the hypothesis that arginine and proline are the major sources of ornithine for placental polyamine production in pigs. Placentae, amniotic fluid, and allantoic fluid were obtained from gilts on Days 20, 30, 35, 40, 45, 50, 60, 90, and 110 of the 114-day gestation (n = 6 per day). Placentae as well as amniotic and allantoic fluids were analyzed for arginase, proline oxidase, ornithine aminotransferase (OAT), ornithine decarboxylase (ODC), proline transport, concentrations of amino acids and polyamines, and polyamine synthesis using established radiochemical and chromatographic methods. Neither arginase activity nor conversion of arginine into polyamines was detected in the porcine placenta. In contrast, both proline and ornithine were converted into putrescine, spermidine, and spermine in placental tissue throughout pregnancy. The activities of proline oxidase, OAT, and ODC as well as proline transport, polyamine synthesis from proline, and polyamine concentrations increased markedly between Days 20 and 40 of gestation, declined between Days 40 and 90 of gestation, and remained at the reduced level through Day 110 of gestation. Proline oxidase and OAT, but not arginase, were present in allantoic and amniotic fluids for the production of ornithine (the immediate substrate for polyamine synthesis). The activities of these two enzymes as well as the concentrations of ornithine and total polyamines in fetal fluids were highest at Day 40 but lowest at Days 20, 90, and 110 of gestation. These results indicate that proline is the major amino acid for polyamine synthesis in the porcine placenta and that the activity of this synthetic pathway is maximal during early pregnancy, when placental growth is most rapid. Our novel findings provide a new base of information for future studies to define the role of proline in fetoplacental growth and development.  相似文献   

17.
In the pig, the growth of intestinal mucosa is very intense after birth. Since the polyamines are key elements affecting cell proliferation and differentiation, the present work was undertaken in order to know whether this hypertrophy is associated with an adaptation of polyamine metabolism. Villus enterocytes isolated from pig immediately after birth or 2 days later were found to contain similar amounts of putrescine, spermidine and spermine, i.e., 0.23; 0.41 and 1.24 nmol/10(6) cells, respectively. At birth, despite a relatively high ODC activity, putrescine synthesis from 1 mM L-arginine or 2 mM L-glutamine was very low in isolated enterocytes (6.4 +/- 3.8 pmol/10(6) cells per 30 min), while spermidine and spermine production were not detectable. This could be explained by a very low L-ornithine generation from both amino acids and to an inhibitory effect of polyamines on ODC activity. Two days later, polyamine synthesis from L-arginine remained undetectable despite a higher L-ornithine generation. This was concomitant with a dramatic fall in ODC activity. At both stages, enterocytes were able to take up polyamines from the extracellular medium in a temperature-dependent manner. It is concluded that de-novo synthesis of polyamines from L-arginine or L-glutamine does not play a significant role in the control of polyamine content of pig enterocytes during the postnatal period. In contrast, polyamine uptake by enterocytes would contribute to maintain a steady-state polyamine content during this period.  相似文献   

18.
Natural polyamines (putrescine, spermidine and spermine) are ubiquitous molecules known to regulate a number of physiological processes and suspected to play a role also in various pathological conditions. Changes in polyamine levels and in their biosynthetic enzymes have been described for some neurodegenerative diseases but the available data are incomplete and somewhat contradictory. We report here alterations of the key enzyme of the polyamine pathway, ornithine decarboxylase (ODC) catalytic activity and polyamine levels in different CNS areas from SOD1 G39A transgenic mice, an animal model for amyotrophic lateral sclerosis (ALS). ODC catalytic activity, was found significantly increased both in the cervical and lumbar spinal cord and, to a lesser extent in the brain stem of transgenic mice at a symptomatic stage of the disease (125-day-old mice), while no differences were present at a pre-symptomatic stage (55-day-old mice). In parallel with the increase of ODC activity putrescine levels were several times increased in both cervical and lumbar spinal cord and in the brain stem of 125-day-old SOD1 G39A mice. Higher order polyamines were not increased except for a significant increase of spermidine in the cervical spinal cord. The present data demonstrate considerable alterations of the ODC/polyamine system in a reliable animal model of ASL, consistent with their role in neurodegeneration and in particular in motor neuron diseases.  相似文献   

19.
Ornithine decarboxylase (ODC) is the first rate-limiting enzyme in polyamine biosynthesis, which is essential for cell survival. We hypothesized that the ODC/polyamine system is involved in ischemic preconditioning (IPC)-mediated cardioprotection through the activation of Erk1/2 and Akt and through the inhibition of the mitochondrial permeability transition (mPT). Isolated rat hearts were subjected to 40 min of ischemia either with or without IPC (3 cycles of 5-min global ischemia), and ODC protein expression, polyamine content, and Akt and Erk1/2 phosphorylation were evaluated after 30 min of reperfusion. IPC significantly upregulated the ODC/polyamine pathway, promoted Erk1/2 and Akt phosphorylation, and reduced the infarct size and heart dysfunction after reperfusion. An inhibitor of ODC, α-difluoromethylornithine (DFMO), abolished the IPC-induced cardioprotection. Moreover, the inhibition of the IPC-induced activation of Erk1/2 and Akt using PD98059 or wortmannin downregulated the ODC/polyamine system. In separate studies, the Ca2+ load required to open the mPT pore was significantly lower in DFMO-treated cardiac mitochondria than in mitochondria from IPC hearts. Furthermore, spermine or spermidine significantly inhibited the mPT induced by CaCl2. These results suggest that IPC upregulates the ODC/polyamine system and mediates preconditioning cardioprotection, which may depend on the phosphorylation/activation of Erk1/2 and Akt and on the inhibition of the mPT during reperfusion.  相似文献   

20.
Recent studies report that the primary transmitter of sympathetic nervous system norepinephrine (NE), which is actively produced in failing human heart, is able to induce apoptosis of rat cardiomyocytes. Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, therefore representing a potential therapeutic target. The natural occurring polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis. Thus, we have studied the involvement of polyamines in the apoptosis of cardiac cells induced by the treatment with NE. The results indicate that NE caused an early induction of the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, followed by a later increase of apoptotic cell death. This effect was prevented in the presence of α-difluoromethylornithine, an irreversible inhibitor of ODC. Moreover, the study of some key signal transduction pathways revealed an involvement of AMP-activated protein kinase, AKT and p38 mitogen-activated protein kinases, in the modulation by polyamines of the response of cardiomyocytes to NE. In fact, polyamine-depleted cells showed an altered activation pattern of these kinases that may contrast apoptosis and appeared to result from a differential effect on the specific phosphatases that dephosphorylate and switch off these signaling proteins. In conclusion, these results indicate that in cardiac cells polyamines are involved in the execution of the death program activated by NE, and suggest that their apoptosis facilitating action is mediated by a network of specific phosphatases and kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号